Conformally related Douglas metrics in dimension two are Randers

被引:0
|
作者
Vladimir S. Matveev
Samaneh Saberali
机构
[1] Friedrich-Schiller-Universität Jena,Institut für Mathematik
[2] Urmia University,undefined
来源
Archiv der Mathematik | 2021年 / 116卷
关键词
Finsler metric; Geodesics; Affine connection; 53B40; 58E10;
D O I
暂无
中图分类号
学科分类号
摘要
We show that two-dimensional conformally related Douglas metrics are Randers.
引用
收藏
页码:221 / 231
页数:10
相关论文
共 31 条
  • [1] Conformally related Douglas metrics in dimension two are Randers
    Matveev, Vladimir S.
    Saberali, Samaneh
    ARCHIV DER MATHEMATIK, 2021, 116 (02) : 221 - 231
  • [2] A class of Finsler metrics projectively related to a Randers metric
    Chen, Guangzu
    Cheng, Xinyue
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2012, 81 (3-4): : 351 - 363
  • [3] Boundary rigidity for Randers metrics
    Monkkonen, Keijo
    ANNALES FENNICI MATHEMATICI, 2022, 47 (01): : 89 - 102
  • [4] Randers metrics on two-spheres of revolution with simple cut locus
    Hama, Rattanasak
    Sabau, Sorin V.
    AIMS MATHEMATICS, 2023, 8 (11): : 26213 - 26236
  • [5] ON RANDERS METRICS OF QUADRATIC RIEMANN CURVATURE
    Li, Benling
    Shen, Zhongmin
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2009, 20 (03) : 369 - 376
  • [6] RANDERS METRICS OF SCALAR FLAG CURVATURE
    Cheng, Xinyue
    Shen, Zhongmin
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 87 (03) : 359 - 370
  • [7] On Randers metrics of isotropic scalar curvature
    Cheng, Xinyue
    Yuan, Mingao
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2014, 84 (1-2): : 63 - 74
  • [8] On Douglas metrics
    Chen, XY
    Shen, ZM
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2005, 66 (3-4): : 503 - 512
  • [9] Douglas-Randers manifolds with vanishing stretch tensor
    Tayebi, Akbar
    Tabatabaeifar, Tayebeh
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2015, 86 (3-4): : 423 - 432
  • [10] On Douglas General (α, β)-metrics
    Wang, Xiao Ming
    Li, Ben Ling
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2017, 33 (07) : 951 - 968