On the Riemann Boundary Value Problem for Null Solutions to Iterated Generalized Cauchy–Riemann Operator in Clifford Analysis

被引:0
|
作者
Paula Cerejeiras
Uwe Kähler
Min Ku
机构
[1] University of Aveiro,Department of Mathematics, Center for Research and Development in Mathematics and Applications
来源
Results in Mathematics | 2013年 / 63卷
关键词
30D10; 30G35; 32A25; 58A10; Clifford analysis; Riemann boundary value problems; Generalized Cauchy–Riemann operator; Poly-Cauchy type integral;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider a kind of Riemann boundary value problem (for short RBVP) for null solutions to the iterated generalized Cauchy–Riemann operator and the polynomially generalized Cauchy–Riemann operator, on the sphere of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{n+1}}$$\end{document} with Hölder-continuous boundary data. Making full use of the poly-Cauchy type integral operator in Clifford analysis, we give explicit integral expressions of solutions to this kind of boundary value problems over the sphere of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{n+1}}$$\end{document} . As special cases solutions of the corresponding boundary value problems for the classical poly-analytic and meta-analytic functions are also derived, respectively.
引用
收藏
页码:1375 / 1394
页数:19
相关论文
共 50 条
  • [1] On the Riemann Boundary Value Problem for Null Solutions to Iterated Generalized Cauchy-Riemann Operator in Clifford Analysis
    Cerejeiras, Paula
    Kaehler, Uwe
    Ku, Min
    RESULTS IN MATHEMATICS, 2013, 63 (3-4) : 1375 - 1394
  • [2] Riemann Boundary Value Problems for Iterated Dirac Operator on the Ball in Clifford Analysis
    Ku, Min
    Fu, Yingxiong
    Uwe, Kaehler
    Paula, Cerejeiras
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2013, 7 (03) : 673 - 693
  • [3] Riemann Boundary Value Problems for Iterated Dirac Operator on the Ball in Clifford Analysis
    Min Ku
    Yingxiong Fu
    Kähler Uwe
    Cerejeiras Paula
    Complex Analysis and Operator Theory, 2013, 7 : 673 - 693
  • [4] Riemann boundary value problem for harmonic functions in Clifford analysis
    Gu Longfei
    Zhang Zhongxiang
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (8-9) : 1001 - 1012
  • [5] Boundary value problem for a generalized Cauchy–Riemann equation with singular coefficients
    A. B. Rasulov
    A. P. Soldatov
    Differential Equations, 2016, 52 : 616 - 629
  • [6] Generalized Fractional Cauchy–Riemann Operator Associated with the Fractional Cauchy–Riemann Operator
    Johan Ceballos
    Nicolás Coloma
    Antonio Di Teodoro
    Diego Ochoa–Tocachi
    Advances in Applied Clifford Algebras, 2020, 30
  • [8] Riemann-Hilbert problems for null-solutions to iterated generalized Cauchy-Riemann equations in axially symmetric domains
    He, Fuli
    Ku, Min
    Kahler, Uwe
    Sommen, Frank
    Bernstein, Swanhild
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (10) : 1990 - 2000
  • [9] Riemann-Hilbert problems for null-solutions to iterated generalized Cauchy-Riemann equation on upper half ball
    Ku, Min
    He, Fuli
    He, Xiuli
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2020, 65 (11) : 1902 - 1918
  • [10] A Cauchy problem for the Cauchy–Riemann operator
    Ibrahim Ly
    Afrika Matematika, 2021, 32 : 69 - 76