On The Structure of A Commutative Banach Algebra Generated By Toeplitz Operators With Quasi-Radial Quasi-Homogeneous Symbols

被引:0
作者
Wolfram Bauer
Nikolai Vasilevski
机构
[1] Georg-August-Universität,Mathematisches Institut
[2] CINVESTAV del I.P.N,Departamento de Matemáticas
来源
Integral Equations and Operator Theory | 2012年 / 74卷
关键词
Primary 47B35; Secondary 47L80; 32A36; Toeplitz operator; weighted Bergman space; commutativeBanach algebra; Gelfand theory; radical; quasi-radial; quasi-homogeneous;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}_{\lambda}^2(\mathbb{B}^n)}$$\end{document} denote the standard weighted Bergman space over the unit ball \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{B}^n}$$\end{document} in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}^n}$$\end{document} . New classes of commutative Banach algebras \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{T}(\lambda)}$$\end{document} which are generated by Toeplitz operators on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}_{\lambda}^2(\mathbb{B}^n)}$$\end{document} have been recently discovered in Vasilevski (Integr Equ Oper Theory 66(1):141–152, 2010). These algebras are induced by the action of the quasi-elliptic group of biholomorphisms of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{B}^n}$$\end{document} . In the present paper we analyze in detail the internal structure of such an algebra in the lowest dimensional case n = 2. We explicitly describe the maximal ideal space and the Gelfand map of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{T}(\lambda)}$$\end{document} . Since \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{T}(\lambda)}$$\end{document} is not invariant under the *-operation of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}(\mathcal{A}_{\lambda}^2(\mathbb{B}^n))}$$\end{document} its inverse closedness is not obvious and is proved. We remark that the algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{T}(\lambda)}$$\end{document} is not semi-simple and we derive its radical. Several applications of our results are given and, in particular, we conclude that the essential spectrum of elements in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{T}(\lambda)}$$\end{document} is always connected.
引用
收藏
页码:199 / 231
页数:32
相关论文
共 24 条
[1]  
Bauer W.(2011)Banach algebras of commuting Toeplitz operators on the ball via the quasi-hyperbolic group Birkhäuser Oper. Adv. Appl. 218 155-175
[2]  
Vasilevski N.(2012)Commutative Toeplitz Banach algebras on the ball and quasi-nilpotent group action Integr. Equ. Oper. Theory 72 223-240
[3]  
Bauer W.(1967)On a class of Math. Ann. 170 283-313
[4]  
Vasilevski N.(2006)-algebras J. Funct. Anal. 234 1-44
[5]  
Cordes H.O.(2009)Commutative Integr. Equ. Oper. Theory 63 547-555
[6]  
Grudsky S.(2008)-algebras of Toeplitz operators and quantization on the unit disk Proc. Am. Math. Soc. 136 1717-1723
[7]  
Quiroga-Barranco R.(2007)Finite-rank products of Toeplitz operators in several complex variables Integr. Equ. Oper. Theory 59 379-419
[8]  
Vasilevski N.(2008)Finite rank Toeplitz operators on the Bergman space Integr. Equ. Oper. Theory 60 89-132
[9]  
Le T.(1946)Commutative Ann. Math. 4 528-550
[10]  
Luecking D.(1999)-algebras of Toeplitz operators on the unit ball. I. Bargmann-type transforms and spectral representations of Toeplitz operators Integr. Equ. Oper. Theory 34 107-126