In this note, we carry on the work on the Brill-Noether loci introduced by Costa and Miró-Roig with the infinitesimal study and give a criterion for smoothness. As an illustration, we extend a result of Costa and Miró-Roig (Forum Math 22, 2008, Theorem 3.9) to regular surfaces with H2(X,OX)=0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H^2(X,{\mathcal {O}}_X)=0$$\end{document} and bring out a Brill-Noether type description for Qin’s extension spaces (Qin in Manuscr Math 72: 163–180, 1991). We compute the dimension of these loci and find out that it equals the expected dimension, confirming, in this case, the general expectation.