A novel and accurate deep learning-based Covid-19 diagnostic model for heart patients

被引:0
|
作者
Ahmed Hassan
Mohamed Elhoseny
Mohammed Kayed
机构
[1] Beni-Suef University,Faculty of Science
[2] Mansoura University,Faculty of Computers and Information
[3] Beni-Suef University,Faculty of Computers and Artificial Intelligence
来源
Signal, Image and Video Processing | 2023年 / 17卷
关键词
Coronavirus; Electro diagrams; Deep learning; Heart patients;
D O I
暂无
中图分类号
学科分类号
摘要
Using radiographic changes of COVID-19 in the medical images, artificial intelligence techniques such as deep learning are used to extract some graphical features of COVID-19 and present a Covid-19 diagnostic tool. Differently from previous works that focus on using deep learning to analyze CT scans or X-ray images, this paper uses deep learning to scan electro diagram (ECG) images to diagnose Covid-19. Covid-19 patients with heart disease are the most people exposed to violent symptoms of Covid-19 and death. This shows that there is a special, unclear relation (until now) and parameters between covid-19 and heart disease. So, as previous works, using a general diagnostic model to detect covid-19 from all patients, based on the same rules, is not accurate as we prove later in the practical section of our paper because the model faces dispersion in the data during the training process. So, this paper aims to propose a novel model that focuses on diagnosing accurately Covid-19 for heart patients only to increase the accuracy and to reduce the waiting time of a heart patient to perform a covid-19 diagnosis. Also, we handle the only one existed dataset that contains ECGs of Covid-19 patients and produce a new version, with the help of a heart diseases expert, which consists of two classes: ECGs of heart patients with positive Covid-19 and ECGs of heart patients with negative Covid-19 cases. This dataset will help medical experts and data scientists to study the relation between Covid-19 and heart patients. We achieve overall accuracy, sensitivity and specificity 99.1%, 99% and 100%, respectively.
引用
收藏
页码:3397 / 3404
页数:7
相关论文
共 50 条
  • [31] A deep learning-based framework for detecting COVID-19 patients using chest X-rays
    Sohaib Asif
    Ming Zhao
    Fengxiao Tang
    Yusen Zhu
    Multimedia Systems, 2022, 28 : 1495 - 1513
  • [32] Deep Learning-Based Time-to-Death Prediction Model for COVID-19 Patients Using Clinical Data and Chest Radiographs
    Matsumoto, Toshimasa
    Walston, Shannon Leigh
    Walston, Michael
    Kabata, Daijiro
    Miki, Yukio
    Shiba, Masatsugu
    Ueda, Daiju
    JOURNAL OF DIGITAL IMAGING, 2023, 36 (01) : 178 - 188
  • [33] A deep learning-based framework for detecting COVID-19 patients using chest X-rays
    Asif, Sohaib
    Zhao, Ming
    Tang, Fengxiao
    Zhu, Yusen
    MULTIMEDIA SYSTEMS, 2022, 28 (04) : 1495 - 1513
  • [34] A Deep Learning-based Radiomics Approach for COVID-19 Detection from CXR Images using Ensemble Learning Model
    Costa, Marcus V. L.
    de Aguiar, Erikson J.
    Rodrigues, Lucas S.
    Ramos, Jonathan S.
    Traina, Caetano, Jr.
    Traina, Agma J. M.
    2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS, 2023, : 517 - 522
  • [35] A novel fusion-based deep learning model for sentiment analysis of COVID-19 tweets
    Basiri, Mohammad Ehsan
    Nemati, Shahla
    Abdar, Moloud
    Asadi, Somayeh
    Acharrya, U. Rajendra
    KNOWLEDGE-BASED SYSTEMS, 2021, 228
  • [36] DL-CRC: Deep Learning-Based Chest Radiograph Classification for COVID-19 Detection: A Novel Approach
    Sakib, Sadman
    Tazrin, Tahrat
    Fouda, Mostafa M.
    Fadlullah, Zubair Md.
    Guizani, Mohsen
    IEEE ACCESS, 2020, 8 : 171575 - 171589
  • [37] Multimodal deep learning-based diagnostic model for BPPV
    Hang Lu
    Yuxing Mao
    Jinsen Li
    Lin Zhu
    BMC Medical Informatics and Decision Making, 24
  • [38] A Novel Machine Learning based Model for COVID-19 Prediction
    Mazen, Tamer Sh
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (11) : 523 - 531
  • [39] Machine learning-based automatic detection of novel coronavirus (COVID-19) disease
    Bhargava, Anuja
    Bansal, Atul
    Goyal, Vishal
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (10) : 13731 - 13750
  • [40] Multimodal deep learning-based diagnostic model for BPPV
    Lu, Hang
    Mao, Yuxing
    Li, Jinsen
    Zhu, Lin
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)