A novel and accurate deep learning-based Covid-19 diagnostic model for heart patients

被引:0
|
作者
Ahmed Hassan
Mohamed Elhoseny
Mohammed Kayed
机构
[1] Beni-Suef University,Faculty of Science
[2] Mansoura University,Faculty of Computers and Information
[3] Beni-Suef University,Faculty of Computers and Artificial Intelligence
来源
Signal, Image and Video Processing | 2023年 / 17卷
关键词
Coronavirus; Electro diagrams; Deep learning; Heart patients;
D O I
暂无
中图分类号
学科分类号
摘要
Using radiographic changes of COVID-19 in the medical images, artificial intelligence techniques such as deep learning are used to extract some graphical features of COVID-19 and present a Covid-19 diagnostic tool. Differently from previous works that focus on using deep learning to analyze CT scans or X-ray images, this paper uses deep learning to scan electro diagram (ECG) images to diagnose Covid-19. Covid-19 patients with heart disease are the most people exposed to violent symptoms of Covid-19 and death. This shows that there is a special, unclear relation (until now) and parameters between covid-19 and heart disease. So, as previous works, using a general diagnostic model to detect covid-19 from all patients, based on the same rules, is not accurate as we prove later in the practical section of our paper because the model faces dispersion in the data during the training process. So, this paper aims to propose a novel model that focuses on diagnosing accurately Covid-19 for heart patients only to increase the accuracy and to reduce the waiting time of a heart patient to perform a covid-19 diagnosis. Also, we handle the only one existed dataset that contains ECGs of Covid-19 patients and produce a new version, with the help of a heart diseases expert, which consists of two classes: ECGs of heart patients with positive Covid-19 and ECGs of heart patients with negative Covid-19 cases. This dataset will help medical experts and data scientists to study the relation between Covid-19 and heart patients. We achieve overall accuracy, sensitivity and specificity 99.1%, 99% and 100%, respectively.
引用
收藏
页码:3397 / 3404
页数:7
相关论文
共 50 条
  • [11] Deep Learning-Based Assessment of Cerebral Microbleeds in COVID-19
    Ferrer, Neus Rodeja
    Sagar, Malini Vendela
    Klein, Kiril Vadimovic
    Kruuse, Christina
    Nielsen, Mads
    Ghazi, Mostafa Mehdipour
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [12] The ensemble deep learning model for novel COVID-19 on CT images
    Zhou Tao
    Lu Huiling
    Yang Zaoli
    Qiu Shi
    Huo Bingqiang
    Dong Yali
    APPLIED SOFT COMPUTING, 2021, 98
  • [13] A novel deep learning-based method for COVID-19 pneumonia detection from CT images
    Ju Luo
    Yuhao Sun
    Jingshu Chi
    Xin Liao
    Canxia Xu
    BMC Medical Informatics and Decision Making, 22
  • [14] Deep learning-based COVID-19 detection system using pulmonary CT scans
    Nair, Rajit
    Alhudhaif, Adi
    Koundal, Deepika
    Doewes, Rumi Iqbal
    Sharma, Preeti
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2021, 29 (29) : 2716 - 2727
  • [15] FirecovNet: A Novel, Lightweight, and Fast Deep Learning-Based Network for Detecting COVID-19 Patients Using Chest X-rays
    Hassanlou, Leila
    Meshgini, Saeed
    Afrouzian, Reza
    Farzamnia, Ali
    Moung, Ervin Gubin
    ELECTRONICS, 2022, 11 (19)
  • [16] Deep learning-based approach for detecting COVID-19 in chest X-rays
    Sahin, M. Emin
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 78
  • [17] A deep learning-based social distance monitoring framework for COVID-19
    Ahmed, Imran
    Ahmad, Misbah
    Rodrigues, Joel J. P. C.
    Jeon, Gwanggil
    Din, Sadia
    SUSTAINABLE CITIES AND SOCIETY, 2021, 65
  • [18] CoVNet-19: A Deep Learning model for the detection and analysis of COVID-19 patients
    Kedia, Priyansh
    Anjum
    Katarya, Rahul
    APPLIED SOFT COMPUTING, 2021, 104
  • [19] A Novel Deep Learning Based Healthcare Model for COVID-19 Pandemic Stress Analysis
    Dumka, Ankur
    Verma, Parag
    Singh, Rajesh
    Bisht, Anil Kumar
    Anand, Divya
    Aljahdali, Hani Moaiteq
    Noya, Irene Delgado
    Obregon, Silvia Aparicio
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (03): : 6029 - 6044
  • [20] A Novel Deep Learning-Based Classification Framework for COVID-19 Assisted with Weighted Average Ensemble Modeling
    Chakraborty, Gouri Shankar
    Batra, Salil
    Singh, Aman
    Muhammad, Ghulam
    Torres, Vanessa Yelamos
    Mahajan, Makul
    DIAGNOSTICS, 2023, 13 (10)