Common Fixed Point Theorem in Partially Ordered [inline-graphic not available: see fulltext]-Fuzzy Metric Spaces

被引:0
作者
S Shakeri
LJB Ćirić
R Saadati
机构
[1] Islamic Azad University-Ayatollah Amoli Branch,Young Research Club
[2] Faculty of Mechanical Engineering,Faculty of Sciences
[3] Islamic Azad University-Ayatollah Amoli Branch,undefined
来源
Fixed Point Theory and Applications | / 2010卷
关键词
Open Subset; Approximation Result; Wide Class; Fixed Point Theorem; Point Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce partially ordered [inline-graphic not available: see fulltext]-fuzzy metric spaces and prove a common fixed point theorem in these spaces.
引用
收藏
相关论文
共 104 条
  • [1] Agarwal RP(2008)Generalized contractions in partially ordered metric spaces Applicable Analysis 87 109-116
  • [2] El-Gebeily MA(2006)Fixed point theorems in partially ordered metric spaces and applications Nonlinear Analysis: Theory, Methods & Applications 65 1379-1393
  • [3] O'Regan D(2007)Monotone iterative technique for functional differential equations with retardation and anticipation Nonlinear Analysis: Theory, Methods & Applications 66 2237-2242
  • [4] Bhaskar TG(1981)Order-reversing maps and unique fixed points in complete lattices Algebra Universalis 12 402-403
  • [5] Lakshmikantham V(1997)Coincidence point theorems and minimization theorems in fuzzy metric spaces Fuzzy Sets and Systems 88 119-127
  • [6] Gnana Bhaskar T(1998)Common fixed points of compatible maps of type Fuzzy Sets and Systems 93 99-111
  • [7] Lakshmikantham V(2008) on fuzzy metric spaces Chaos, Solitons & Fractals 37 781-791
  • [8] Vasundhara Devi J(1974)The existence theorems for fixed and periodic points of nonexpansive mappings in intuitionistic fuzzy metric spaces Proceedings of the American Mathematical Society 45 267-273
  • [9] Björner A(2007)A generalization of Banach's contraction principle Topology and Its Applications 154 3100-3106
  • [10] Chang SS(2008)Coincidence and fixed points for maps on topological spaces Nonlinear Analysis: Theory, Methods & Applications 69 763-769