Multi-task Gaussian process for imputing missing data in multi-trait and multi-environment trials

被引:0
|
作者
Tomoaki Hori
David Montcho
Clement Agbangla
Kaworu Ebana
Koichi Futakuchi
Hiroyoshi Iwata
机构
[1] The University of Tokyo,Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences
[2] Africa Rice Center,Laboratory of Genetic and Biotechnologies, Faculty of Sciences and Techniques
[3] University of Abomey-Calavi,Genetic Resources Center
[4] National Institute of Agrobiological Sciences,undefined
来源
关键词
Covariance Structure; Broad Sense Heritability; Genomic Prediction; Imputation Accuracy; Beta Regression;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:2101 / 2115
页数:14
相关论文
共 50 条
  • [31] Multi-trait multi-environment quantitative trait loci mapping for a sugarcane commercial cross provides insights on the inheritance of important traits
    Margarido, G. R. A.
    Pastina, M. M.
    Souza, A. P.
    Garcia, A. A. F.
    MOLECULAR BREEDING, 2015, 35 (08)
  • [32] Focused multi-task learning in a Gaussian process framework
    Gayle Leen
    Jaakko Peltonen
    Samuel Kaski
    Machine Learning, 2012, 89 : 157 - 182
  • [33] Multi-task Gaussian process models for biomedical applications
    Duerichen, Robert
    Pimentel, Marco A. F.
    Clifton, Lei
    Schweikard, Achim
    Clifton, David A.
    2014 IEEE-EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS (BHI), 2014, : 492 - 495
  • [34] Focused multi-task learning in a Gaussian process framework
    Leen, Gayle
    Peltonen, Jaakko
    Kaski, Samuel
    MACHINE LEARNING, 2012, 89 (1-2) : 157 - 182
  • [35] Multi-task Sparse Gaussian Processes with Improved Multi-task Sparsity Regularization
    Zhu, Jiang
    Sun, Shiliang
    PATTERN RECOGNITION (CCPR 2014), PT I, 2014, 483 : 54 - 62
  • [36] Missing value imputation in multi-environment trials: Reconsidering the Krzanowski method
    Arciniegas-Alarcon, Sergio
    Garcia-Pena, Marisol
    Krzanowski, Wojtek
    CROP BREEDING AND APPLIED BIOTECHNOLOGY, 2016, 16 (02): : 77 - 85
  • [37] Multi-resolution Multi-task Gaussian Processes
    Hamelijnck, Oliver
    Damoulas, Theodoros
    Wang, Kangrui
    Girolami, Mark A.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [38] Multi-trait and multi-environment QTL analysis reveals the impact of seed colour on seed composition traits in Brassica napus
    Bianyun Yu
    Kerry Boyle
    Wentao Zhang
    Stephen J. Robinson
    Erin Higgins
    Lanette Ehman
    Jo-Anne Relf-Eckstein
    Gerhard Rakow
    Isobel A. P. Parkin
    Andrew G. Sharpe
    Pierre R. Fobert
    Molecular Breeding, 2016, 36
  • [39] Multi-trait and multi-environment Bayesian analysis to predict the G x E interaction in flood-irrigated rice
    da Silva Junior, Antonio Carlos
    Sant'Anna, Isabela de Castro
    Silva Siqueira, Michele Jorge
    Cruz, Cosme Damiao
    Azevedo, Camila Ferreira
    Nascimento, Moyses
    Soares, Plinio Cesar
    PLOS ONE, 2022, 17 (05):
  • [40] Multi-trait and multi-environment QTL analysis reveals the impact of seed colour on seed composition traits in Brassica napus
    Yu, Bianyun
    Boyle, Kerry
    Zhang, Wentao
    Robinson, Stephen J.
    Higgins, Erin
    Ehman, Lanette
    Relf-Eckstein, Jo-Anne
    Rakow, Gerhard
    Parkin, Isobel A. P.
    Sharpe, Andrew G.
    Fobert, Pierre R.
    MOLECULAR BREEDING, 2016, 36 (08)