Numerical Analysis of a Convex-Splitting BDF2 Method with Variable Time-Steps for the Cahn–Hilliard Model

被引:0
|
作者
Xiuling Hu
Lulu Cheng
机构
[1] Jiangsu Normal University,School of Mathematics and Statistics
[2] Jiangsu Normal University,School of Mathematics and Statistics
来源
Journal of Scientific Computing | 2024年 / 98卷
关键词
Cahn–Hilliard model; BDF2 method; Energy dissipation law; Discrete gradient structure; Discrete orthogonal convolution kernels; norm convergence; 35Q99; 65M06; 65M12; 74A50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the convex-splitting BDF2 method with variable time-steps (proposed in Chen et al. SIAM J Numer Anal 57:495–525, 2019) is reconsidered for the Cahn–Hilliard model. We adopt the Fourier pseudo-spectral discretization in space. With the help of the discrete gradient structure of the BDF2 formula and some embedded inequalities, we prove that the scheme preserves a modified energy dissipation law under the updated time-step-ratio restriction 0<rk=τk/τk-1<4.864\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<r_{k}=\tau _{k}/\tau _{k-1}<4.864$$\end{document}. By utilizing the discrete orthogonal convolution kernels, some discrete convolution inequalities and some proof techniques (Lemma 4.6), we tackle the difficulty brought from the Douglas-Dupont regularization stabilized term and prove the robust L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}$$\end{document} norm convergence of the scheme under the same mild time-step-ratio restriction 0<rk<4.864.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<r_{k}<4.864.$$\end{document} Numerical experiments are carried out to support our theoretical analysis and a time adaptive strategy is applied to accelerate the simulation of the multi-scale characteristics of the Cahn–Hilliard model.
引用
收藏
相关论文
共 50 条
  • [21] AN H2 CONVERGENCE OF A SECOND-ORDER CONVEX-SPLITTING, FINITE DIFFERENCE SCHEME FOR THE THREE-DIMENSIONAL CAHN-HILLIARD EQUATION
    Guo, Jing
    Wang, Cheng
    Wise, Steven M.
    Yue, Xingye
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2016, 14 (02) : 489 - 515
  • [22] ANNOUNCEMENT ON “SHARP ERROR ESTIMATE OF BDF2 SCHEME WITH VARIABLE TIME STEPS FOR LINEAR REACTION-DIFFUSION EQUATIONS”
    ZHANG Jiwei
    ZHAO Chengchao
    数学杂志, 2021, 41 (01) : 5 - 11
  • [23] Numerical Analysis of a BDF2 Modular Grad–Div Stabilization Method for the Navier–Stokes Equations
    Y. Rong
    J. A. Fiordilino
    Journal of Scientific Computing, 2020, 82
  • [24] An adaptive BDF2 implicit time-stepping method for the phase field crystal model
    Liao, Hong-lin
    Ji, Bingquan
    Zhang, Luming
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (01) : 649 - 679
  • [25] A linearized BDF2 virtual element method for the unsteady Brinkman-Forchheimer equations with variable time step
    Chen, Yanping
    Xiong, Yu
    CHAOS SOLITONS & FRACTALS, 2024, 187
  • [26] Numerical Analysis of a BDF2 Modular Grad-Div Stability Method for the Stokes/Darcy Equations
    Wang, Jiangshan
    Meng, Lingxiong
    Jia, Xiaofeng
    Jia, Hongen
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (05) : 1981 - 2000
  • [27] NUMERICAL ANALYSIS OF MODULAR REGULARIZATION METHODS FOR THE BDF2 TIME DISCRETIZATION OF THE NAVIER-STOKES EQUATIONS
    Layton, William
    Mays, Nathaniel
    Neda, Monika
    Trenchea, Catalin
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (03): : 765 - 793
  • [28] NUMERICAL ANALYSIS OF A BDF2 MODULAR GRAD-DIV STABILITY METHOD FOR THE STOKES/DARCY EQUATIONS
    王江珊
    孟令雄
    贾晓峰
    贾宏恩
    Acta Mathematica Scientia, 2022, 42 (05) : 1981 - 2000
  • [29] Numerical Analysis of a BDF2 Modular Grad-Div Stability Method for the Stokes/Darcy Equations
    Jiangshan Wang
    Lingxiong Meng
    Xiaofeng Jia
    Hongen Jia
    Acta Mathematica Scientia, 2022, 42 : 1981 - 2000
  • [30] Errors of an Implicit Variable-Step BDF2 Method for a Molecular Beam Epitaxial Model with Slope Selection
    Zhao, Xuan
    Zhang, Haifeng
    Sun, Hong
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2023, 13 (04) : 886 - 913