Numerical Analysis of a Convex-Splitting BDF2 Method with Variable Time-Steps for the Cahn–Hilliard Model

被引:0
|
作者
Xiuling Hu
Lulu Cheng
机构
[1] Jiangsu Normal University,School of Mathematics and Statistics
[2] Jiangsu Normal University,School of Mathematics and Statistics
来源
Journal of Scientific Computing | 2024年 / 98卷
关键词
Cahn–Hilliard model; BDF2 method; Energy dissipation law; Discrete gradient structure; Discrete orthogonal convolution kernels; norm convergence; 35Q99; 65M06; 65M12; 74A50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the convex-splitting BDF2 method with variable time-steps (proposed in Chen et al. SIAM J Numer Anal 57:495–525, 2019) is reconsidered for the Cahn–Hilliard model. We adopt the Fourier pseudo-spectral discretization in space. With the help of the discrete gradient structure of the BDF2 formula and some embedded inequalities, we prove that the scheme preserves a modified energy dissipation law under the updated time-step-ratio restriction 0<rk=τk/τk-1<4.864\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<r_{k}=\tau _{k}/\tau _{k-1}<4.864$$\end{document}. By utilizing the discrete orthogonal convolution kernels, some discrete convolution inequalities and some proof techniques (Lemma 4.6), we tackle the difficulty brought from the Douglas-Dupont regularization stabilized term and prove the robust L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}$$\end{document} norm convergence of the scheme under the same mild time-step-ratio restriction 0<rk<4.864.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<r_{k}<4.864.$$\end{document} Numerical experiments are carried out to support our theoretical analysis and a time adaptive strategy is applied to accelerate the simulation of the multi-scale characteristics of the Cahn–Hilliard model.
引用
收藏
相关论文
共 50 条
  • [1] Numerical Analysis of a Convex-Splitting BDF2 Method with Variable Time-Steps for the Cahn-Hilliard Model
    Hu, Xiuling
    Cheng, Lulu
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 98 (01)
  • [2] A convex splitting BDF2 method with variable time-steps for the extended Fisher-Kolmogorov equation
    Sun, Qihang
    Ji, Bingquan
    Zhang, Luming
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 114 : 73 - 82
  • [3] Mesh-Robustness of an Energy Stable BDF2 Scheme with Variable Steps for the Cahn–Hilliard Model
    Hong-lin Liao
    Bingquan Ji
    Lin Wang
    Zhimin Zhang
    Journal of Scientific Computing, 2022, 92
  • [4] Mesh-Robustness of an Energy Stable BDF2 Scheme with Variable Steps for the Cahn-Hilliard Model
    Liao, Hong-lin
    Ji, Bingquan
    Wang, Lin
    Zhang, Zhimin
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (02)
  • [5] Convergence analysis of the maximum principle preserving BDF2 scheme with variable time-steps for the space fractional Allen-Cahn equation
    Hu, Bingqing
    Zhang, Wei
    Zhao, Xuan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 448
  • [6] Efficient Variable Steps BDF2 Scheme for the Two-Dimensional Space Fractional Cahn-Hilliard Model
    Zhao, Xuan
    Xue, Zhongqin
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024,
  • [7] Structure-preserving weighted BDF2 methods for anisotropic Cahn-Hilliard model: Uniform/variable-time-steps
    Li, Meng
    Bi, Jingjiang
    Wang, Nan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 140
  • [8] A Positivity-Preserving, Energy Stable BDF2 Scheme with Variable Steps for the Cahn–Hilliard Equation with Logarithmic Potential
    Qianqian Liu
    Jianyu Jing
    Maoqin Yuan
    Wenbin Chen
    Journal of Scientific Computing, 2023, 95
  • [9] A SECOND ORDER BDF NUMERICAL SCHEME WITH VARIABLE STEPS FOR THE CAHN-HILLIARD EQUATION
    Chen, Wenbin
    Wang, Xiaoming
    Yan, Yue
    Zhang, Zhuying
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (01) : 495 - 525
  • [10] An energy stable linear BDF2 scheme with variable time-steps for the molecular beam epitaxial model without slope selection
    Kang, Yuanyuan
    Liao, Hong-lin
    Wang, Jindi
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 118