Analytic two-loop form factors in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 4 $\end{document} SYM

被引:0
作者
Andreas Brandhuber
Gabriele Travaglini
Gang Yang
机构
[1] Queen Mary University of London,Centre for Research in String Theory, School of Physics and Astronomy
[2] Weizmann Institute of Science,Department of Particle Physics and Astrophysics
[3] Universita¨t Hamburg,II. Institut fu¨r Theoretische Physik
关键词
Supersymmetric gauge theory; Scattering Amplitudes; QCD;
D O I
10.1007/JHEP05(2012)082
中图分类号
学科分类号
摘要
We derive a compact expression for the three-point MHV form factors of half- BPS operators in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 4 $\end{document} super Yang-Mills at two loops. The main tools of our calculation are generalised unitarity applied at the form factor level, and the compact expressions for supersymmetric tree-level form factors and amplitudes entering the cuts. We confirm that infrared divergences exponentiate as expected, and that collinear factorisation is entirely captured by an ABDK/BDS ansatz. Next, we construct the two-loop remainder function obtained by subtracting this ansatz from the full two-loop form factor and compute it numerically. Using symbology, combined with various physical constraints and symme- tries, we find a unique solution for its symbol. With this input we construct a remarkably compact analytic expression for the remainder function, which contains only classical poly- logarithms, and compare it to our numerical results. Furthermore, we make the surprising observation that our remainder is equal to the maximally transcendental piece of the two- loop Higgs plus three-gluon scattering amplitudes in QCD.
引用
收藏
相关论文
共 162 条
[31]  
Schmidt CR(2011)Bootstrapping the three-loop hexagon JHEP 11 152-undefined
[32]  
Gehrmann T(2012)Wilson Loops @ 3-Loops in Special Kinematics JHEP 01 024-undefined
[33]  
Jaquier M(1998)Analytic result for the two-loop six-point NMHV amplitude in N = 4 super Yang-Mills theory Phys. Lett. B 427 161-undefined
[34]  
Glover E(2004)The Singular behavior of QCD amplitudes at two loop order Phys. Lett. B 595 521-undefined
[35]  
Koukoutsakis A(2011)Three loop universal anomalous dimension of the Wilson operators in N = 4 SUSY Yang-Mills model JHEP 12 024-undefined
[36]  
Bern Z(2012)Form factors and scattering amplitudes in N = 4 SYM in dimensional and massive regularizations JHEP 03 101-undefined
[37]  
Dixon LJ(1983)The three-loop form factor in N = 4 super Yang-Mills Phys. Rev. D 28 1542-undefined
[38]  
Dunbar DC(1986)Dimensionally regularized two loop on-shell quark form-factor Nucl. Phys. B 268 453-undefined
[39]  
Kosower DA(1987)Dimensional regularization of mass and infrared singularities in two loop on-shell vertex functions J. Math. Phys. 28 945-undefined
[40]  
Bern Z(2005)Integrals for two loop calculations in massless QCD Phys. Lett. B 622 295-undefined