Representations of Nilpotent Groups on Spaces with Indefinite Metric

被引:0
作者
Edward Kissin
Victor S. Shulman
机构
[1] STORM,Department of Mathematics
[2] London Metropolitan University,undefined
[3] Vologda State University,undefined
来源
Integral Equations and Operator Theory | 2017年 / 87卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The paper studies the structure of J-unitary representations of connected nilpotent groups on Πk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Pi _{k}$$\end{document}-spaces, that is, the representations on a Hilbert space preserving a quadratic form “with a finite number of negative squares”. Apart from some comparatively simple cases, such representations can be realized as double extensions of finite-dimensional representations by unitary ones. So their study is based on some special cohomological technique. We concentrate mostly on the problems of the decomposition of these representations and the classification of “non-decomposable” ones.
引用
收藏
页码:81 / 116
页数:35
相关论文
共 15 条
  • [1] Araki H(1985)Indecomposable representations with invariant inner product Commun. Math. Phys. 97 149-159
  • [2] Ismagilov RS(1966)Unitary representations of the Lorentz group in spaces with indefinite metric Izv. Akad. Nauk SSSR 30 497-522
  • [3] Ismagilov RS(1966)On irreducible representations of the discrete group SL( Izv. Akad. Nauk SSSR 30 923-950
  • [4] Ismagilov RS(1984) which are unitary with respect to an indefinite metric Matem. Zametki 35 99-105
  • [5] Kirillov AA(1962)On the problem of extension of representations Russ. Math. Surv. 17 53-104
  • [6] Morchio G(1990)Unitary representations of nilpotent Lie groups J. Math. Phys. 31 1467-1477
  • [7] Pierotti D(2011)Infrared and vacuum structure in two-dimensional local quantum field theory Q. J. Math. (Oxf.) 62 173-187
  • [8] Strocchi F(1997)Fixed points of holomorphic transformations of operator balls Univ. Iagellonicae Acta Mathematica Fasciculus XXXIV 113-134
  • [9] Ostrovskii MI(2002)Mathematical problems of gauge quantum field theory: a survey of the Schwinger model J. Math. Phys. 43 243-2224
  • [10] Shulman VS(1974)Infinite infrared regularization and a state space for the Heisenberg algebra J. Math. Phys. 15 2198-undefined