Detection threshold for non-parametric estimation

被引:0
|
作者
Abdourrahmane M. Atto
Dominique Pastor
Gregoire Mercier
机构
[1] Telecom Bretagne,Institut Telecom
[2] CNRS UMR 2872 TAMCIC,undefined
[3] CS 83818,undefined
来源
Signal, Image and Video Processing | 2008年 / 2卷
关键词
Non-parametric estimation; Soft thresholding; Sparse transform; Wavelet transform; Non-parametric detection;
D O I
暂无
中图分类号
学科分类号
摘要
A new threshold is presented for better estimating a signal by sparse transform and soft thresholding. This threshold derives from a non-parametric statistical approach dedicated to the detection of a signal with unknown distribution and unknown probability of presence in independent and additive white Gaussian noise. This threshold is called the detection threshold and is particularly appropriate for selecting the few observations, provided by the sparse transform, whose amplitudes are sufficiently large to consider that they contain information about the signal. An upper bound for the risk of the soft thresholding estimation is computed when the detection threshold is used. For a wide class of signals, it is shown that, when the number of observations is large, this upper bound is from about twice to four times smaller than the standard upper bounds given for the universal and the minimax thresholds. Many real-world signals belong to this class, as illustrated by several experimental results.
引用
收藏
页码:207 / 223
页数:16
相关论文
共 50 条
  • [11] Non-parametric estimation of historical volatility
    Randal, JA
    Thomson, PJ
    Lally, MT
    QUANTITATIVE FINANCE, 2004, 4 (04) : 427 - 440
  • [12] NON-PARAMETRIC ESTIMATION OF A REGRESSION FUNCION
    SCHUSTER, EF
    ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (02): : 695 - +
  • [13] New ideas in non-parametric estimation
    Pistone, G
    DISORDERED AND COMPLEX SYSTEMS, 2001, 553 : 159 - 164
  • [14] Non-parametric estimation of the residual distribution
    Akritas, MG
    Van Keilegom, I
    SCANDINAVIAN JOURNAL OF STATISTICS, 2001, 28 (03) : 549 - 567
  • [15] Non-parametric estimation of morphological lopsidedness
    Giese, Nadine
    van der Hulst, Thijs
    Serra, Paolo
    Oosterloo, Tom
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 461 (02) : 1656 - 1673
  • [16] Non-parametric estimation of signals vectors
    Marchuk, L.A.
    Giniyatullin, N.F.
    Borisov, K.S.
    Izvestiya Vysshikh Uchebnykh Zavedenij. Radioelektronika, 2001, 44 (09): : 31 - 39
  • [17] Non-Parametric Estimation of Technical Progress
    Kevin J. Fox
    Journal of Productivity Analysis, 1998, 10 : 235 - 250
  • [18] NON-PARAMETRIC ESTIMATION OF CONDITIONAL QUANTILES
    SAMANTA, M
    STATISTICS & PROBABILITY LETTERS, 1989, 7 (05) : 407 - 412
  • [19] Density estimation with non-parametric methods
    Fadda, D
    Slezak, E
    Bijaoui, A
    ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 1998, 127 (02): : 335 - 352
  • [20] NON-PARAMETRIC ESTIMATION OF ECONOMETRIC FUNCTIONALS
    ULLAH, A
    CANADIAN JOURNAL OF ECONOMICS-REVUE CANADIENNE D ECONOMIQUE, 1988, 21 (03): : 625 - 658