Embedded antipodal planes and the minimum weight of the dual code of points and lines in projective planes of order p2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^2$$\end{document}

被引:0
作者
Maarten De Boeck
Geertrui Van de Voorde
机构
[1] University of Memphis,Department of Mathematical Sciences
[2] Ghent University,Department of Mathematics: Algebra and Geometry
[3] University of Canterbury,undefined
关键词
Projective plane; Antipodal plane; (Dual) code of projective plane; Minimum weight; 51E22; 51A45; 94B05;
D O I
10.1007/s10623-022-01131-2
中图分类号
学科分类号
摘要
The minimum weight of the code generated by the incidence matrix of points versus lines in a projective plane has been known for over 50 years. Surprisingly, finding the minimum weight of the dual code of projective planes of non-prime order is still an open problem, even in the Desarguesian case. In this paper, we focus on the case of projective planes of order p2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^2$$\end{document}, where p is prime, and we link the existence of small weight code words in the dual code to the existence of embedded subplanes and antipodal planes. In the Desarguesian case, we can exclude such code words by showing a more general result that no antipodal plane of order at least 3 can be embedded in a Desarguesian projective plane. Furthermore, we use combinatorial arguments to rule out the existence of code words in the dual code of points and lines of an arbitrary projective plane of order p2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^2$$\end{document}, p prime, of weight at most 2p2-2p+4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2p^2-2p+4$$\end{document} using more than two symbols. In particular, this leads to the result that the dual code of the Desarguesian projective plane PG(2,p2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{PG}\,}}(2,p^2)$$\end{document}, p≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 5$$\end{document}, has minimum weight at least 2p2-2p+5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2p^2-2p+5$$\end{document}.
引用
收藏
页码:895 / 920
页数:25
相关论文
共 15 条
[1]  
Bagchi B(2002)Projective geometric codes J. Comb. Theory Ser. A 99 128-142
[2]  
Inamdar SP(2003)Dual codes of projective planes of order 25 Adv. Geom. 3 140-152
[3]  
Clark KL(2001)Ternary dual codes of the planes of order nine J. Stat. Plan. Inference 95 229-236
[4]  
Hatfield LD(1991)An upper bound for the J. Comb. Theory Ser. A 56 297-302
[5]  
Key JD(2007)-rank of a translation plane Des. Codes Cryptogr. 44 133-142
[6]  
Ward HN(1972)A lower bound for the minimum weight of the dual J. Comb. Theory Ser. A 12 268-282
[7]  
Key JD(1979)-ary code of a projective plane of order Geom. Dedicata 8 407-415
[8]  
de Resmini JM(2016)On the non-existence of a class of configurations which are nearly generalized J. Geom. 107 445-466
[9]  
Key JD(undefined)-gons undefined undefined undefined-undefined
[10]  
Mackenzie K(undefined)The undefined undefined undefined-undefined