An Old Method of Jacobi to Find Lagrangians

被引:0
作者
M. C. Nucci
P. G. L. Leach
机构
[1] Università di Perugia,Dipartimento di Matematica e Informatica
[2] University of KwaZulu-Natal,School of Mathematical Sciences, Westville Campus
来源
Journal of Nonlinear Mathematical Physics | 2009年 / 16卷
关键词
Lagrangian; Jacobi last multiplier; Lie symmetry; Noether symmetry;
D O I
暂无
中图分类号
学科分类号
摘要
In a recent paper by Ibragimov a method was presented in order to find Lagrangians of certain second-order ordinary differential equations admitting a two-dimensional Lie symmetry algebra. We present a method devised by Jacobi which enables one to derive (many) Lagrangians of any second-order differential equation. The method is based on the search of the Jacobi Last Multipliers for the equations. We exemplify the simplicity and elegance of Jacobi’s method by applying it to the same two equations as Ibragimov did. We show that the Lagrangians obtained by Ibragimov are particular cases of some of the many Lagrangians that can be obtained by Jacobi’s method.
引用
收藏
页码:431 / 441
页数:10
相关论文
共 20 条
[1]  
D’Ambrosi G(2009)Lagrangians for equations of Painlevé type by means of the Jacobi Last Multiplier J. Nonlinear Math. Phys 16 61-71
[2]  
Nucci M C(1983)A theory of exact and approximate configurational invariants Physica D 8 90-105
[3]  
Hall L S(1998)Lie-Bäcklund and Noether symmetries with applications Nonlinear Dynamics 15 115-136
[4]  
Ibragimov N H(1842)Sur un noveau principe de la mécanique analytique C. R. Acad. Sci. Paris 15 202-205
[5]  
Kara A H(1844)Sul principio dell’ultimo moltiplicatore, e suo uso come nuovo principio generale di meccanica, Giornale Arcadico di Scienze Lettere ed Arti 99 129-146
[6]  
Mahomed F M(1844)Theoria novi multiplicatoris systemati æquationum differentia lium vulgarium applicandi J. Reine Angew. Math 27 199-268
[7]  
Jacobi C G J(1971)Conservation laws for gauge-variant Lagrangians in Classical Mechanics Am. J. Phys 39 502-506
[8]  
Jacobi C G J(1918)Invariante Variationsprobleme Königlich Gesellschaft der Wissenschaften Göttingen Nachrichten Mathematik-Physik Klasse 2 235-267
[9]  
Jacobi C G J(2005)Jacobi last multiplier and Lie symmetries: a novel application of an old relationship J. Nonlinear Math. Phys 12 284-304
[10]  
Lévy-Leblond J M(2007)Lie symmetries, and hidden linearity: “goldfishes” galore, Theor Math. Phys 151 851-862