共 20 条
[1]
D’Ambrosi G(2009)Lagrangians for equations of Painlevé type by means of the Jacobi Last Multiplier J. Nonlinear Math. Phys 16 61-71
[2]
Nucci M C(1983)A theory of exact and approximate configurational invariants Physica D 8 90-105
[3]
Hall L S(1998)Lie-Bäcklund and Noether symmetries with applications Nonlinear Dynamics 15 115-136
[4]
Ibragimov N H(1842)Sur un noveau principe de la mécanique analytique C. R. Acad. Sci. Paris 15 202-205
[5]
Kara A H(1844)Sul principio dell’ultimo moltiplicatore, e suo uso come nuovo principio generale di meccanica, Giornale Arcadico di Scienze Lettere ed Arti 99 129-146
[6]
Mahomed F M(1844)Theoria novi multiplicatoris systemati æquationum differentia lium vulgarium applicandi J. Reine Angew. Math 27 199-268
[7]
Jacobi C G J(1971)Conservation laws for gauge-variant Lagrangians in Classical Mechanics Am. J. Phys 39 502-506
[8]
Jacobi C G J(1918)Invariante Variationsprobleme Königlich Gesellschaft der Wissenschaften Göttingen Nachrichten Mathematik-Physik Klasse 2 235-267
[9]
Jacobi C G J(2005)Jacobi last multiplier and Lie symmetries: a novel application of an old relationship J. Nonlinear Math. Phys 12 284-304
[10]
Lévy-Leblond J M(2007)Lie symmetries, and hidden linearity: “goldfishes” galore, Theor Math. Phys 151 851-862