Generalized Penalty Method for Elliptic Variational–Hemivariational Inequalities

被引:0
作者
Yi-bin Xiao
Mircea Sofonea
机构
[1] University of Electronic Science and Technology of China,School of Mathematical Sciences
[2] University of Perpignan,Laboratoire de Mathématiques et Physique
来源
Applied Mathematics & Optimization | 2021年 / 83卷
关键词
Variational–hemivariational inequality; Clarke subdifferential; Penalty method; Convergence; Frictional contact; 49J40; 47J20; 74M10; 74M15;
D O I
暂无
中图分类号
学科分类号
摘要
We consider an elliptic variational–hemivariational inequality with constraints in a reflexive Banach space, denoted P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}$$\end{document}, to which we associate a sequence of inequalities {Pn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\mathcal{P}_n\}$$\end{document}. For each n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\in \mathbb {N}$$\end{document}, Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}_n$$\end{document} is a variational–hemivariational inequality without constraints, governed by a penalty parameter λn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _n$$\end{document} and an operator Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_n$$\end{document}. Such inequalities are more general than the penalty inequalities usually considered in literature which are constructed by using a fixed penalty operator associated to the set of constraints of P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}$$\end{document}. We provide the unique solvability of inequality Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}_n$$\end{document}. Then, under appropriate conditions on operators Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_n$$\end{document}, we state and prove the convergence of the solution of Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}_n$$\end{document} to the solution of P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}$$\end{document}. This convergence result extends the results previously obtained in the literature. Its generality allows us to apply it in various situations which we present as examples and particular cases. Finally, we consider a variational–hemivariational inequality with unilateral constraints which arises in Contact Mechanics. We illustrate the applicability of our abstract convergence result in the study of this inequality and provide the corresponding mechanical interpretations.
引用
收藏
页码:789 / 812
页数:23
相关论文
共 51 条
  • [1] Brézis H(1972)Problèmes unilatéraux J. Math. Pures Appl. 51 1-168
  • [2] Han W(2018)Numerical analysis of stationary variational-hemivariational inequalities with applications in contact mechanics Mathe. Mech. Solids. 23 279-293
  • [3] Han W(2014)A class of variational-hemivariational inequalities with applications to frictional contact problems SIAM J. Math. Anal. 46 3891-3912
  • [4] Migórski S(2017)Numerical analysis of elliptic hemivariational inequalities SIAM J. Numer. Anal. 55 640-663
  • [5] Sofonea M(2018)Numerical analysis of stationary variational-hemivariational inequalities Numer. Math. 139 563-592
  • [6] Han W(2018)A Stackelberg quasi-equilibrium problem via quasi-variational inequalities Carpathian J. Math. 34 355-362
  • [7] Sofonea M(2018)Existence and stability for a generalized differential mixed quasi-variational inequality Carpathian J. Math. 34 347-354
  • [8] Barboteu M(2017)A class of variational-hemivariational inequalities in reflexive Banach spaces J. Elast. 12 151-178
  • [9] Han W(2018)Penalty and regularization method for variationalhemivariational inequalities with application to frictional contact Z. Angew. Math. Phys. 98 1503-1520
  • [10] Sofonea M(2018)Optimal control of elliptic variational-hemivariational inequalities J. Optim. Theory Appl. 178 1-25