Pan-connectedness of graphs with large neighborhood unions

被引:0
作者
Kewen Zhao
机构
[1] Qiongzhou University,Department of Mathematics
来源
Monatshefte für Mathematik | 2009年 / 156卷
关键词
Pan-connected graphs; Neighborhood unions; 05C38;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a simple graph with n vertices. For any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v \in V(G)}$$\end{document} , let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N(v)=\{u \in V(G): uv \in E(G)\}}$$\end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${NC(G)= \min \{|N(u) \cup N(v)|: u, v \in V(G)}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${uv \not \in E(G)\}}$$\end{document} , and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${NC_2(G)= \min\{|N(u) \cup N(v)|: u, v \in V(G)}$$\end{document} and u and v has distance 2 in E(G)}. Let l ≥ 1 be an integer. A graph G on n ≥ l vertices is [l, n]-pan-connected if for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u, v \in V(G)}$$\end{document} , and any integer m with l ≤ m ≤ n, G has a (u, v)-path of length m. In 1998, Wei and Zhu (Graphs Combinatorics 14:263–274, 1998) proved that for a three-connected graph on n ≥ 7 vertices, if NC(G) ≥ n − δ(G) + 1, then G is [6, n]-pan-connected. They conjectured that such graphs should be [5, n]-pan-connected. In this paper, we prove that for a three-connected graph on n ≥ 7 vertices, if NC2(G) ≥ n − δ(G) + 1, then G is [5, n]-pan-connected. Consequently, the conjecture of Wei and Zhu is proved as NC2(G) ≥ NC(G). Furthermore, we show that the lower bound is best possible and characterize all 2-connected graphs with NC2(G) ≥ n − δ(G) + 1 which are not [4, n]-pan-connected.
引用
收藏
页码:279 / 293
页数:14
相关论文
共 6 条
  • [1] Faudree R.J.(1991)Neighborhood unions and highly hamilton graphs Ars Combinatoria 31 139-148
  • [2] Gould R.J.(1998)On the pathconnectivity of graphs with large degrees and neighborhood unions Graphs Combinatorics 14 263-274
  • [3] Jacobson M.S.(undefined)undefined undefined undefined undefined-undefined
  • [4] Lesnian L.(undefined)undefined undefined undefined undefined-undefined
  • [5] Wei B.(undefined)undefined undefined undefined undefined-undefined
  • [6] Zhu Y.(undefined)undefined undefined undefined undefined-undefined