Diatomite derived hierarchical hybrid anode for high performance all-solid-state lithium metal batteries

被引:0
|
作者
Fei Zhou
Zheng Li
Yu-Yang Lu
Bao Shen
Yong Guan
Xiu-Xia Wang
Yi-Chen Yin
Bai-Sheng Zhu
Lei-Lei Lu
Yong Ni
Yi Cui
Hong-Bin Yao
Shu-Hong Yu
机构
[1] University of Science and Technology of China,Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry
[2] University of Science and Technology of China,Department of Polymer Science and Engineering
[3] University of Science and Technology of China,CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics
[4] University of Science and Technology of China,National Synchrotron Radiation Laboratory
[5] University of Science and Technology of China,Center for Micro
[6] Stanford University, and Nanoscale Research and Fabrication
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Lithium metal based anode with hierarchical structure to enable high rate capability, volume change accommodation, and dendritic suppression is highly desirable for all-solid-state lithium metal battery. However, the fabrication of hierarchical lithium metal based anode is challenging due to the volatility of lithium. Here, we report that natural diatomite can act as an excellent template for constructing hierarchical silicon-lithium based hybrid anode for high performance all-solid-state lithium metal battery. This hybrid anode exhibits stable lithium stripping/plating performance over 1000 h with average overpotential lower than 100 mV without any short circuit. Moreover, all-solid-state full cell using this lithium metal composite anode to couple with lithium iron phosphate cathode shows excellent cycling stability (0.04% capacity decay rate for 500 cycles at 0.5C) and high rate capability (65 mAh g−1 at 5C). The present natural diatomite derived hybrid anode could further promote the fabrication of high performance all-solid-state lithium batteries from sustainable natural resources.
引用
收藏
相关论文
共 50 条
  • [21] Interface Design for High-Performance All-Solid-State Lithium Batteries
    Wan, Hongli
    Zhang, Bao
    Liu, Sufu
    Wang, Zeyi
    Xu, Jijian
    Wang, Chunsheng
    ADVANCED ENERGY MATERIALS, 2024, 14 (19)
  • [22] High Performance All-Solid-State Lithium Batteries: Interface Regulation Mechanism
    Luo, Haili
    Guan, Zhixi
    Wu, Chuanhuang
    Zhu, Yuchuan
    Wang, Cong
    Wang, Xueyu
    Guo, Daying
    Chen, Xi'an
    Wang, Shun
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (42)
  • [23] Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries
    Kang, Qi
    Li, Yong
    Zhuang, Zechao
    Wang, Dingsheng
    Zhi, Chunyi
    Jiang, Pingkai
    Huang, Xingyi
    JOURNAL OF ENERGY CHEMISTRY, 2022, 69 : 194 - 204
  • [24] Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries
    Qi Kang
    Yong Li
    Zechao Zhuang
    Dingsheng Wang
    Chunyi Zhi
    Pingkai Jiang
    Xingyi Huang
    Journal of Energy Chemistry , 2022, (06) : 194 - 204
  • [25] A Layered Hybrid Oxide-Sulfide All-Solid-State Battery with Lithium Metal Anode
    Huettl, Juliane
    Zapp, Nicolas
    Tanikawa, Saoto
    Nikolowski, Kristian
    Michaelis, Alexander
    Auer, Henry
    BATTERIES-BASEL, 2023, 9 (10):
  • [26] Achieving high kinetics anode materials for all-solid-state lithium-ion batteries
    Zheng, Yuxin
    Liu, Shuo
    Zheng, Junnan
    Kang, Guojian
    Li, Yafeng
    Yang, Siman
    Wang, Jianbiao
    Yang, Ting
    Wei, Mingdeng
    JOURNAL OF ENERGY STORAGE, 2024, 100
  • [27] High performance all-solid-state lithium/sulfur batteries using lithium argyrodite electrolyte
    Chen, Maohua
    Adams, Stefan
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2015, 19 (03) : 697 - 702
  • [28] High performance all-solid-state lithium/sulfur batteries using lithium argyrodite electrolyte
    Maohua Chen
    Stefan Adams
    Journal of Solid State Electrochemistry, 2015, 19 : 697 - 702
  • [29] Nitride solid-state electrolytes for all-solid-state lithium metal batteries
    Li, Weihan
    Li, Minsi
    Ren, Haoqi
    Kim, Jung Tae
    Li, Ruying
    Sham, Tsun-Kong
    Sun, Xueliang
    ENERGY & ENVIRONMENTAL SCIENCE, 2025,
  • [30] Scalable, thin asymmetric composite solid electrolyte for high-performance all-solid-state lithium metal batteries
    Wang, Guoxu
    Liang, Yuhao
    Liu, Hong
    Wang, Chao
    Li, Dabing
    Fan, Li-Zhen
    INTERDISCIPLINARY MATERIALS, 2022, 1 (03): : 434 - 444