Water-based Al2O3, CuO and TiO2 nanofluids as secondary fluids for refrigeration systems: a thermal conductivity study

被引:0
|
作者
Vipin Nair
A. D. Parekh
P. R. Tailor
机构
[1] Sardar Vallabhbhai National Institute of Technology,Advanced Refrigeration and Air Conditioning Laboratory, Department of Mechanical Engineering
关键词
Nanofluids; Secondary refrigerant; Thermal conductivity; ANOVA; R718;
D O I
暂无
中图分类号
学科分类号
摘要
The existing models for predicting the thermal conductivity of nanofluid are not suitable for R718 (water)-based applications due to its lower working temperature as compared to other heat transfer fluids. R718 is used as a secondary refrigerant in industrial and central air conditioning systems where the working temperature of R718 may vary between 280 and 298 K. Therefore, it is important to develop a thermal conductivity model which can make accurate predictions for this particular temperature range. Another motivation for this study comes from the fact that most of the research on water-based nanofluids have been conducted at elevated temperatures (above 293 K) whereas in this work, the thermal conductivity measurements were taken at a temperature as low as 280 K. The objective of the present work is to generate a regression model for the prediction of the thermal conductivity of R718-based nanofluids for low particle volume fraction scenarios. The four primary factors which are included in this analysis are thermal conductivity of nanoparticle (knp), particle volume fraction (φ), particle size (dp) and temperature (T). The thermal conductivity data available in the literature for TiO2, Al2O3 and CuO-based nanofluids were considered while generating the model. The higher particle volume fraction leads to a higher viscosity rise and higher pumping power; consequently, the model was designed for low particle volume fractions ranging from 0.25 to 1.0%.
引用
收藏
相关论文
共 50 条
  • [31] Effect of the Freeze-Thaw on the Suspension Stability and Thermal Conductivity of EG/Water-Based Al2O3 Nanofluids
    Choi, Tae Jong
    Jang, Seok Pil
    Jung, Dae Soo
    Lim, Hyung Mi
    Byeon, Young Man
    Choi, Im Joo
    JOURNAL OF NANOMATERIALS, 2019, 2019
  • [32] Sensitivity of thermal conductivity for Al2O3 nanofluids
    Agarwal, Ravi
    Verma, Kamalesh
    Agrawal, Narendra Kumar
    Singh, Ramvir
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2017, 80 : 19 - 26
  • [33] Enhanced thermal conductivity of TiO2 -: water based nanofluids
    Murshed, SMS
    Leong, KC
    Yang, C
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2005, 44 (04) : 367 - 373
  • [34] Effects of sonication time and temperature on thermal conductivity of CuO/water and Al2O3/water nanofluids with and without surfactant
    Gangadevi, R.
    Vinayagam, B. K.
    Senthilraja, S.
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (02) : 9004 - 9011
  • [35] Al2O3/TiO2 hybrid nanofluids thermal conductivityAn experimental approach
    Georgiana Madalina Moldoveanu
    Alina Adriana Minea
    Gabriela Huminic
    Angel Huminic
    Journal of Thermal Analysis and Calorimetry, 2019, 137 : 583 - 592
  • [36] Thermal Conductivity of Al2O3 and CeO2 Nanoparticles and Their Hybrid Based Water Nanofluids: An Experimental Study
    Kamel, Mohammed Saad
    Al-Oran, Otabeh
    Lezsovits, Ferenc
    PERIODICA POLYTECHNICA-CHEMICAL ENGINEERING, 2021, 65 (01) : 50 - 60
  • [37] Experimental thermal conductivity of ethylene glycol and water mixture based low volume concentration of Al2O3 and CuO nanofluids
    Sundar, L. Syam
    Farooky, Md. Hashim
    Sarada, S. Naga
    Singh, M. K.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2013, 41 : 41 - 46
  • [38] Experimental investigation of optimum thermal performance and pressure drop of water-based Al2O3, TiO2 and ZnO nanofluids flowing inside a circular microchannel
    Topuz, Adnan
    Engin, Tahsin
    Ozalp, A. Alper
    Erdogan, Beytullah
    Mert, Serdar
    Yeter, Alper
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2018, 131 (03) : 2843 - 2863
  • [39] Experimental investigation of optimum thermal performance and pressure drop of water-based Al2O3, TiO2 and ZnO nanofluids flowing inside a circular microchannel
    Adnan Topuz
    Tahsin Engin
    A. Alper Özalp
    Beytullah Erdoğan
    Serdar Mert
    Alper Yeter
    Journal of Thermal Analysis and Calorimetry, 2018, 131 : 2843 - 2863
  • [40] Thermal conductivity of Al2O3 + TiO2/water nanofluid: Model development and experimental validation
    Charab, Alireza Azadi
    Movahedirad, Salman
    Norouzbeigi, Reza
    APPLIED THERMAL ENGINEERING, 2017, 119 : 42 - 51