Water-based Al2O3, CuO and TiO2 nanofluids as secondary fluids for refrigeration systems: a thermal conductivity study

被引:0
|
作者
Vipin Nair
A. D. Parekh
P. R. Tailor
机构
[1] Sardar Vallabhbhai National Institute of Technology,Advanced Refrigeration and Air Conditioning Laboratory, Department of Mechanical Engineering
关键词
Nanofluids; Secondary refrigerant; Thermal conductivity; ANOVA; R718;
D O I
暂无
中图分类号
学科分类号
摘要
The existing models for predicting the thermal conductivity of nanofluid are not suitable for R718 (water)-based applications due to its lower working temperature as compared to other heat transfer fluids. R718 is used as a secondary refrigerant in industrial and central air conditioning systems where the working temperature of R718 may vary between 280 and 298 K. Therefore, it is important to develop a thermal conductivity model which can make accurate predictions for this particular temperature range. Another motivation for this study comes from the fact that most of the research on water-based nanofluids have been conducted at elevated temperatures (above 293 K) whereas in this work, the thermal conductivity measurements were taken at a temperature as low as 280 K. The objective of the present work is to generate a regression model for the prediction of the thermal conductivity of R718-based nanofluids for low particle volume fraction scenarios. The four primary factors which are included in this analysis are thermal conductivity of nanoparticle (knp), particle volume fraction (φ), particle size (dp) and temperature (T). The thermal conductivity data available in the literature for TiO2, Al2O3 and CuO-based nanofluids were considered while generating the model. The higher particle volume fraction leads to a higher viscosity rise and higher pumping power; consequently, the model was designed for low particle volume fractions ranging from 0.25 to 1.0%.
引用
收藏
相关论文
共 50 条
  • [21] Heat conductivity of nanofluids based on Al2O3, SiO2, and TiO2
    D. V. Kuznetsov
    S. P. Bardakhanov
    A. V. Nomoev
    S. A. Novopashin
    V. Z. Lygdenov
    Journal of Engineering Thermophysics, 2010, 19 : 138 - 143
  • [22] Heat Conductivity of Nanofluids Based on Al2O3, SiO2, and TiO2
    Kuznetsov, D. V.
    Bardakhanov, S. P.
    Nomoev, A. V.
    Novopashin, S. A.
    Lygdenov, V. Z.
    JOURNAL OF ENGINEERING THERMOPHYSICS, 2010, 19 (03) : 138 - 143
  • [23] Stability and sedimentation characteristics of water based Al2O3 and TiO2 nanofluids
    Mukherjee, Sayantan
    Chakrabarty, Shanta
    Mishra, Purna Chandra
    Chaudhuri, Paritosh
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART N-JOURNAL OF NANOMATERIALS NANOENGINEERING AND NANOSYSTEMS, 2024, 238 (1-2) : 17 - 30
  • [24] Integration of Al2O3, CuO, and TiO2 nanofluids for efficient solar desalination
    Elzemzmi, Ibtissem
    Hidouri, Khaoula
    Chaouachi, Bechir
    Akrout, Hiba
    DESALINATION AND WATER TREATMENT, 2021, 239 : 41 - 53
  • [25] Erratum to: Heat Conductivity of Nanofluids Based on Al2O3, SiO2, and TiO2
    D. V. Kuznetsov
    S. P. Bardakhanov
    A. V. Nomoev
    S. A. Novopashin
    V. Z. Lygdenov
    Journal of Engineering Thermophysics, 2010, 19 : 318 - 318
  • [26] Stability of TiO2 and Al2O3 Nanofluids
    Wang Xian-Ju
    Li Hai
    Li Xin-Fang
    Wang Zhou-Fei
    Lin Fang
    CHINESE PHYSICS LETTERS, 2011, 28 (08)
  • [27] Natural Convection Heat Transfer of Water-Based CuO and Water-Based Al2O3 Nanofluids Through a Horizontal Plate
    Ozgur, Damla
    Ozturk, Aysegul
    Kahveci, Kamil
    EXERGY FOR A BETTER ENVIRONMENT AND IMPROVED SUSTAINABILITY 1: FUNDAMENTALS, 2018, : 139 - 146
  • [28] A novel correlation approach for viscosity prediction of water based nanofluids of Al2O3, TiO2, SiO2 and CuO
    Meybodi, Mandi Kalantari
    Daryasafar, Amin
    Koochi, Mehran Moradi
    Moghadasi, Jamshid
    Meybodi, Roohollah Babaei
    Ghahfarokhi, Ali Khorram
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2016, 58 : 19 - 27
  • [29] Measurement and Correlation of the Viscosity of Water-Based Al2O3 and TiO2 Nanofluids in High Temperatures and Comparisons with Literature Reports
    Yiamsawas, Thaklaew
    Dalkilic, Ahmet Selim
    Mahian, Omid
    Wongwises, Somchai
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2013, 34 (12) : 1697 - 1703
  • [30] Pressure Drop and Performance Characteristics of Water-Based Al2O3 and CuO Nanofluids in a Triangular Duct
    Heris, S. Zeinali
    Ahmadi, F.
    Mahian, Omid
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2013, 34 (10) : 1368 - 1375