Polynomial decay of an elastic/viscoelastic waves interaction system

被引:0
作者
Qiong Zhang
机构
[1] Beijing Institute of Technology,School of Mathematics and Statistics, Beijing Key Laboratory on MCAACI
来源
Zeitschrift für angewandte Mathematik und Physik | 2018年 / 69卷
关键词
Wave; Viscoelasticity; Interaction system; Polynomial stability; 35B35; 35B40; 93D20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a coupled system which models elastic and viscoelastic waves, evolving in two distinct domains, connected through a common interface. We show the polynomial decay of solution to the system by using the frequency domain method.
引用
收藏
相关论文
共 53 条
  • [11] Schnaubelt R(1988)On the mathematical model for linear elastic systems with analytic damping SIAM J. Control Optim. 26 714-724
  • [12] Bardos C(1991)Exponential decay of the energy of a one-dimensional nonhomogeneous medium SIAM J. Control. Optim. 29 368-380
  • [13] Lebeau G(2002)Exponential decay of energy of vibrating strings with local viscoelasticity Z. Angew. Math. Phys. 53 265-280
  • [14] Rauch J(2004)Exponential stability for the wave equation with local Kelvin-Voigt damping C. R. Acad. Sci. Paris 339 769-774
  • [15] Batty CJK(2005)Characterization of polynomial decay rate for the solution of linear evolution equation Z. Angew. Math. Phys. 56 630-644
  • [16] Duyckaerts T(2017)Eventual differentiability of a string with local kelvin-voigt damping ESAIM Control Optim. Calculus Var. 23 443-454
  • [17] Blum H(2016)Stability of a string with local Kelvin-Voigt damping and non-smooth coefficient at interface SIAM J. Control. Optim. 54 1859-1871
  • [18] Rannacher R(1992)About the Lamé system in a polygonal or a polyhedral domain and a coupled problem between the Lamé system and the plate equation I: Regularity of the solutions Ann. Sc. Norm. Super, Pisa CI. Sci. (4) 19 327-361
  • [19] Borichev A(2005)Polynomial decay for a hyperbolic-parabolic coupled system J. Math. Pures Appl. 84 407-470
  • [20] Tomilov Y(2004)On localized Kelvin-Voigt damping Z. Angew. Math. Mech 84 280-283