Polynomial decay of an elastic/viscoelastic waves interaction system

被引:0
作者
Qiong Zhang
机构
[1] Beijing Institute of Technology,School of Mathematics and Statistics, Beijing Key Laboratory on MCAACI
来源
Zeitschrift für angewandte Mathematik und Physik | 2018年 / 69卷
关键词
Wave; Viscoelasticity; Interaction system; Polynomial stability; 35B35; 35B40; 93D20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a coupled system which models elastic and viscoelastic waves, evolving in two distinct domains, connected through a common interface. We show the polynomial decay of solution to the system by using the frequency domain method.
引用
收藏
相关论文
共 53 条
  • [1] Alves M(2014)The asymptotic behavior of the linear transmission problem in viscoelasticity Math. Nachr. 287 483-497
  • [2] Rivera JM(2010)Stabilization of a transmission wave/plate equation J. Differ. Equ. 249 707-727
  • [3] Sepúlveda M(2006)Polynomial stability of operator semigroups Math. Nachr. 279 1425-1440
  • [4] Villagrán OV(1992)Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary SIAM J. Control Optim. 30 1024-1065
  • [5] Garay MZ(2008)Non-uniform stability for bounded semi-groups on Banach spaces J. Evol. Equ. 8 765-780
  • [6] Ammari K(1980)On the boundary value problem of the biharmonic operator on domains with angular corners Math. Methods Appl. Sci. 2 556-581
  • [7] Nicaise S(2010)Optimal polynomial decay of functions and operator semigroups Math. Ann. v.347 455-478
  • [8] Bátkai A(2009)Penalization of Dirichlet optimal control problems ESAIM Control Optim. Calc. Var. 15 782-809
  • [9] Engel KJ(1991)Exponential decay of energy of evolution equation with locally distributed damping SIAM J. Appl. Math. 51 266-301
  • [10] Prüss J(1998)Spectrum and stability for elastic systems with global or local Kelvin-Voigt damping SIAM J. Appl. Math. 59 651-668