Groundstates and infinitely many high energy solutions to a class of nonlinear Schrödinger–Poisson systems

被引:0
作者
Tomas Dutko
Carlo Mercuri
Teresa Megan Tyler
机构
[1] Swansea University,Department of Mathematics, Computational Foundry
来源
Calculus of Variations and Partial Differential Equations | 2021年 / 60卷
关键词
Nonlinear Schrödinger–Poisson system; Weighted Sobolev spaces; Palais–Smale sequences; Compactness; Multiple solutions; Nonexistence; 35Q55; 35J20; 35B65; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
We study a nonlinear Schrödinger–Poisson system which reduces to the nonlinear and nonlocal PDE -Δu+u+λ21ω|x|N-2⋆ρu2ρ(x)u=|u|q-1ux∈RN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} - \Delta u+ u + \lambda ^2 \left( \frac{1}{\omega |x|^{N-2}}\star \rho u^2\right) \rho (x) u = |u|^{q-1} u \quad x \in {{\mathbb {R}}}^N, \end{aligned}$$\end{document}where ω=(N-2)|SN-1|,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega = (N-2)|{\mathbb {S}}^{N-1} |,$$\end{document}λ>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0,$$\end{document}q∈(1,2∗-1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in (1,2^{*} -1),$$\end{document}ρ:RN→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho :{{\mathbb {R}}}^N \rightarrow {{\mathbb {R}}}$$\end{document} is nonnegative, locally bounded, and possibly non-radial, N=3,4,5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=3,4,5$$\end{document} and 2∗=2N/(N-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^*=2N/(N-2)$$\end{document} is the critical Sobolev exponent. In our setting ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} is allowed as particular scenarios, to either (1) vanish on a region and be finite at infinity, or (2) be large at infinity. We find least energy solutions in both cases, studying the vanishing case by means of a priori integral bounds on the Palais–Smale sequences and highlighting the role of certain positive universal constants for these bounds to hold. Within the Ljusternik–Schnirelman theory we show the existence of infinitely many distinct pairs of high energy solutions, having a min–max characterisation given by means of the Krasnoselskii genus. Our results cover a range of cases where major loss of compactness phenomena may occur, due to the possible unboundedness of the Palais–Smale sequences, and to the action of the group of translations.
引用
收藏
相关论文
共 69 条
  • [1] Ambrosetti A(2008)On Schrödinger-Poisson systems Milan J. Math. 76 257-274
  • [2] Ambrosetti A(1973)Dual variational methods in critical point theory and its applications J. Funct. Anal. 14 349-381
  • [3] Rabinowitz PH(2008)Multiple bound states for the Schrödinger-Poisson problem Commun. Contemp. Math 10 391-404
  • [4] Ambrosetti A(1995)Existence and multiplicity results for some superlinear elliptic problems on Commun. Partial Differ. Equ. 20 1725-1741
  • [5] Ruiz D(2014)Maximizers for Gagliardo-Nirenberg inequalities and related non-local problems Mat. Ann. 360 653-673
  • [6] Bartsch T(2018)Sharp Gagliardo-Nirenberg inequalities in fractional Coulomb-Sobolev spaces Trans. AMS 370 8285-8310
  • [7] Wang Z-Q(2003)Effective one particle quantum dynamics of electrons: a numerical study of the Schrödinger-Poisson- Commun. Math. Sci 1 809-828
  • [8] Bellazzini J(1987) model Arch. Rat. Mech. Anal. 99 283-300
  • [9] Frank R(1961)Positive solutions of some nonlinear elliptic problems in exterior domains Duke Math. J. 28 301-324
  • [10] Visciglia N(1983)The space Arch. Rational Mech. Anal. 82 313-375