A finite element method and variable transformations for a forward-backward heat equation

被引:0
作者
Hao Lu
Joseph Maubach
机构
[1] Institute for Scientific Computation,
[2] Texas A&M University,undefined
[3] College Station,undefined
[4] Texas 77843-3404,undefined
[5] USA ,undefined
来源
Numerische Mathematik | 1998年 / 81卷
关键词
Mathematics Subject Classification (1991): 65N30, 35K20;
D O I
暂无
中图分类号
学科分类号
摘要
The Galerkin finite element method for the forward-backward heat equation is generalized to a wider class of equations with the use of a result on the existence and uniqueness of a weak solution to the problems. First, the theory for the Galerkin method is extended to forward-backward heat equations which contain additional convection and mass terms on an irregular domain. Second, variable transformations are constructed and applied to solve a wide class of forward-backward heat equations that leads to a substantial improvement. Third, Error estimates are presented. Finally, conducted numerical tests corroborate the obtained results.
引用
收藏
页码:249 / 272
页数:23
相关论文
共 50 条
[31]   New convergence results for the inexact variable metric forward-backward method [J].
Bonettini, S. ;
Prato, M. ;
Rebegoldi, S. .
APPLIED MATHEMATICS AND COMPUTATION, 2021, 392
[32]   Finite element approach to combined forward-backward extrusion of the body of an automatic valve [J].
Math, M ;
Mahovic, S ;
Grizelj, B .
ADVANCES IN MANUFACTURING TECHNOLOGY - XIII, 1999, :53-57
[33]   The Riemann problem for a forward-backward parabolic equation [J].
Gilding, Brian H. ;
Tesei, Alberto .
PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (06) :291-311
[34]   Irreversibility and hysteresis for a forward-backward diffusion equation [J].
Evans, LC .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2004, 14 (11) :1599-1620
[35]   NUMERICAL EXPLORATION OF A FORWARD-BACKWARD DIFFUSION EQUATION [J].
Lafitte, P. ;
Mascia, C. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (06)
[36]   Hierarchy of forward-backward stochastic Schrodinger equation [J].
Ke, Yaling ;
Zhao, Yi .
JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (02)
[37]   A multiblock generalized forward-backward method [J].
Pino, MR ;
Obelleiro, F ;
Rodríguez, JL ;
Burkholder, RJ .
RADIO SCIENCE, 2001, 36 (01) :19-29
[38]   Variable metric techniques for forward-backward methods in imaging [J].
Bonettini, S. ;
Porta, F. ;
Ruggiero, V ;
Zanni, L. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 385
[39]   A block coordinate variable metric forward-backward algorithm [J].
Chouzenoux, Emilie ;
Pesquet, Jean-Christophe ;
Repetti, Audrey .
JOURNAL OF GLOBAL OPTIMIZATION, 2016, 66 (03) :457-485
[40]   On a Forward-backward Stochastic System Associated to the Burgers Equation [J].
Cruzeiro, Ana Bela ;
Shamarova, Evelina .
STOCHASTIC ANALYSIS WITH FINANCIAL APPLICATIONS, HONG KONG 2009, 2011, 65 :43-59