Images of two-dimensional motivic Galois representations

被引:0
作者
Kirsten Schneider
机构
[1] Universität Regensburg,
来源
manuscripta mathematica | 2004年 / 113卷
关键词
Integral Representation; Number Field; Galois Representation; Adelic Version;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a two-dimensional motive which is pure of weight w over a number field K and let (φℓ: GK →Aut(Hℓ(M) ))ℓ be the system of the ℓ-adic realizations. Choose GK-invariant ℤℓ -lattices Tℓ of Hℓ(M) and let (φℓ:GK →GL (Tℓ))ℓbe the corresponding system of integral representations. Then either for almost all primes φℓ (GK) consist of all the elements of GL(Tℓ) with determinant in (ℤℓ*)−w or the system (φℓ) is associated to algebraic Hecke characters. We also can prove an adelic version of our results.
引用
收藏
页码:293 / 306
页数:13
相关论文
共 13 条
[1]  
Jong J.M.(1996)Construction de Représentations p-adiques Publ. Math. IHES 83 51-608
[2]  
Deligne G.(2)undefined Proceedings of Symposia in Pure Math. 33 313-undefined
[3]  
Faltings undefined(1)undefined J. Am. Math. Soc. 1 255-undefined
[4]  
Fontaine undefined(1982)undefined Ann. scient. Éc. Norm. Sup. 4 e 15 547-undefined
[5]  
Laffaille undefined(1987)undefined Contemporary Math 67 179-undefined
[6]  
Fontaine undefined(1992)undefined Invent. Math. 107 447-undefined
[7]  
Jannsen undefined(1974)undefined Invent. Math. 23 73-undefined
[8]  
Katz undefined(1985)undefined Glasgow Math. J. 27 185-undefined
[9]  
Ribet undefined(1982)undefined Monodromiefiltration und verschwindende Zykeln in ungleicher Charakteristik . Invent. Math. 68 21-undefined
[10]  
Rapoport undefined(1990)undefined Invent. Math. 100 419-undefined