Weighted Norm Inequalities for Fractional Bergman Operators

被引:0
作者
Benoît F. Sehba
机构
[1] University of Ghana,Department of Mathematics
[2] Legon,undefined
来源
Constructive Approximation | 2020年 / 51卷
关键词
Békollè–Bonami weight; Bergman operator; Dyadic grid; Maximal function; Upper-half plane; Primary 47B38; Secondary 30H20; 42A61; 42B35; 42C40;
D O I
暂无
中图分类号
学科分类号
摘要
We prove in this paper one weight norm inequalities for some positive Bergman-type operators.
引用
收藏
页码:225 / 245
页数:20
相关论文
共 11 条
  • [1] Dondjio C(2016)Maximal function and Carleson measures in the theory of Békollé–Bonami weights Colloq. Math. 142 211-226
  • [2] Sehba BF(2010)Sharp weighted bounds for fractional integral operators J. Funct. Anal. 259 1073-1097
  • [3] Lacey M(1974)Weighted norm inequalities for fractional integrals Trans. Am. Math. Soc. 192 261-274
  • [4] Moen K(2013)Sharp Békollé estimates for the Bergman projection J. Funct. Anal. 265 3233-3244
  • [5] Pérez C(2018)Weighted boundedness of maximal functions and fractional Bergman operators J. Geom. Anal. 28 1635-1664
  • [6] Torres RH(undefined)undefined undefined undefined undefined-undefined
  • [7] Muckenhoupt B(undefined)undefined undefined undefined undefined-undefined
  • [8] Wheeden RL(undefined)undefined undefined undefined undefined-undefined
  • [9] Pott S(undefined)undefined undefined undefined undefined-undefined
  • [10] Reguera MC(undefined)undefined undefined undefined undefined-undefined