Non-Binary Quantum Codes from Cyclic Codes over Fp×(Fp+vFp)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{p} \times (\mathbb {F}_{p}+v\mathbb {F}_{p})$\end{document}

被引:0
作者
Fatma Çalışkan
Tülay Yıldırım
Refia Aksoy
机构
[1] Istanbul University,Department of Mathematics
[2] Karabuk University,Eskipazar Vacational School
[3] Istanbul Gedik University,Department of Computer Engineering
关键词
Cyclic codes; Generator polynomials; Quantum codes;
D O I
10.1007/s10773-023-05294-z
中图分类号
学科分类号
摘要
In this paper, we study cyclic codes over the ring Fp×(Fp+vFp)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{p} \times (\mathbb {F}_{p}+v\mathbb {F}_{p})$\end{document}, where p is an odd prime and v2 = v. We first investigate the properties of the ring Fp×(Fp+vFp)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{p} \times (\mathbb {F}_{p}+v\mathbb {F}_{p})$\end{document} and the linear codes over this ring. We also define a distance-preserving Gray map from Fp×(Fp+vFp)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{p} \times (\mathbb {F}_{p}+v\mathbb {F}_{p})$\end{document} to Fp3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{p}^{3}$\end{document}. We discuss cyclic codes and their dual codes over the ring. Also, we define a set of generators for these codes. As an implementation, we show that quantum error-correcting codes can be obtained from dual containing cyclic codes over the ring by using the Calderbank-Shor-Steane (CSS) construction. Furthermore, we give some illustrative examples. Finally, we tabulate the non-binary quantum error-correcting codes obtained from cyclic codes over the ring.
引用
收藏
相关论文
共 105 条
  • [1] Blake IF(1972)Codes over certain rings Inform. Control. 20 396-404
  • [2] Hammons AR(1994)The $\mathbb {Z}_{4}$ℤ4-linearity of Kerdock, Preparata, Goethals and related codes IEEE Trans. Inform. Theory. 40 301-309
  • [3] Kumar PV(2014)Linear codes over $\mathbb {Z}_{4}+u\mathbb {Z}_{4}$ℤ4 + uℤ4: MacWilliams identities, projections, and formally self-dual codes Finite Fields Their Appl. 27 24-40
  • [4] Calderbank AR(2011)A class of constacyclic codes over $\mathbb {F}_{p}+v\mathbb {F}_{p}$Fp + vFp Discrete Math. 311 2677-2682
  • [5] Sloane NJA(1996)Cyclic codes and quadratic residue codes over $\mathbb {Z}_{4}$ℤ4 IEEE Trans. Inf. Theory. 42 1594-1600
  • [6] Solé P(2003)Cyclic codes over $\mathbb {Z}_{4}$ℤ4 of oddly even length Discret. Appl. Math. 128 27-46
  • [7] Yildiz B(2017)Cyclic codes of odd length over $\mathbb {Z}_{4}[u]/< u^{k}>$ℤ4[u]/ < uk > Cryptogr. Commun. 9 559-624
  • [8] Karadeniz S(2016)Cyclic and some constacyclic codes over the ring $\mathbb {Z}_{4}[u]/< u^{2}-1>$ℤ4[u]/ < u2 − 1 > Finite Fields Their Appl. 38 27-39
  • [9] Zhu S(2016)A note on cyclic codes over $\mathbb {Z}_{4}+u\mathbb {Z}_{4}$ℤ4 + uℤ4 Discrete Math. 8 1-17
  • [10] Wang L(2014)On cyclic codes over $\mathbb {Z}_{4}+u\mathbb {Z}_{4}$ℤ4 + uℤ4 and their $\mathbb {Z}_{4}$ℤ4-images IJICoT 2 226-237