On Chebyshev–Davidson Method for Symmetric Generalized Eigenvalue Problems

被引:0
作者
Cun-Qiang Miao
机构
[1] Central South University,School of Mathematics and Statistics
来源
Journal of Scientific Computing | 2020年 / 85卷
关键词
Generalized eigenvalue problem; Davidson method; Chebyshev polynomial; Symmetric matrix; 65F15; 65N25;
D O I
暂无
中图分类号
学科分类号
摘要
As we know, polynomial filtering technique is efficient for accelerating convergence of standard eigenvalue problems, which, however, has not appeared for solving generalized eigenvalue problems. In this paper, by integrating the effectiveness and robustness of the Chebyshev polynomial filters, we propose the Chebyshev–Davidson method for computing some extreme eigenvalues and corresponding eigenvectors of generalized matrix pencils. In this method, both matrix factorizations and solving systems of linear equations are all avoided. Convergence analysis indicates that the Chebyshev–Davidson method achieves quadratic convergence locally in an ideal situation. Furthermore, numerical experiments are carried out to demonstrate the convergence properties and to show great superiority and robustness over some state-of-the art iteration methods.
引用
收藏
相关论文
共 69 条
[1]  
Anderson CR(2010)A Rayleigh–Chebyshev procedure for finding the smallest eigenvalues and associated eigenvectors of large sparse Hermitian matrices J. Comput. Phys. 229 7477-7487
[2]  
Banerjee AS(2016)Chebyshev polynomial filtered subspace iteration in the discontinuous Galerkin method for large-scale electronic structure calculations J. Chem. Phys. 15 154101-418
[3]  
Lin L(2008)Computation of large invariant subspaces using polynomial filtered Lanczos iterations with applications in density functional theory SIAM J. Matrix Anal. Appl. 30 397-267
[4]  
Hu W(1996)New iterative methods for solution of the eigenproblem Numer. Math. 9 259-21
[5]  
Yang C(1994)An implicitly restarted Lanczos method for large symmetric eigenvalue problems Electron. Trans. Numer. Anal. 2 1-94
[6]  
Pask JE(1975)The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices J. Comput. Phys. 17 87-A2246
[7]  
Bekas C(2012)A filtered Lanczos procedure for extreme and interior eigenvalue problems SIAM J. Sci. Comput. 34 A2220-125
[8]  
Kokiopoulou E(1998)Jacobi–Davidson style QR and QZ algorithms for the reduction of matrix pencils SIAM J. Sci. Comput. 20 94-334
[9]  
Saad Y(2002)An inverse free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems SIAM J. Sci. Copmut. 24 312-A2122
[10]  
Bradbury WW(2015)Zolotarev quadrature rules and load balancing for the FEAST eigensolver SIAM J. Sci. Copmut. 37 A2100-61