Supermembrane origin of type II gauged supergravities in 9D

被引:0
作者
M. P. García del Moral
J. M. Peña
A. Restuccia
机构
[1] Universidad de Oviedo,Departamento de Física
[2] Universidad Central de Venezuela,Departamento de Física, Facultad de Ciencias
[3] Universidad de Antofagasta,Departamento de Física
[4] Universidad Simón Bolívar,Departamento de Física
来源
Journal of High Energy Physics | / 2012卷
关键词
Supergravity Models; M-Theory; p-branes; Discrete and Finite Symmetries;
D O I
暂无
中图分类号
学科分类号
摘要
The M-theory origin of the IIB gauged supergravities in nine dimensions, classified according to the inequivalent classes of monodromy, is shown to exactly corresponds to the global description of the supermembrane with central charges. The global description is a realization of the sculpting mechanism of gauging (arXiv:1107.3255) and it is associated to particular deformation of fibrations. The supermembrane with central charges may be formulated in terms of sections on symplectic torus bundles with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathrm{SL}}\left( {{2},\mathbb{Z}} \right) $\end{document} monodromy. This global formulation corresponds to the gauging of the abelian subgroups of SL(2, Z) associated to monodromies acting on the target torus. We show the existence of the trombone symmetry in the supermembrane formulated as a non-linear realization of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathrm{SL}}\left( {{2},\mathbb{Z}} \right) $\end{document} symmetry and construct its gauging in terms of the supermembrane formulated on an inequivalent class of symplectic torus fibration. The supermembrane also exhibits invariance under T-duality and we find the explicit T-duality transformation. It has a natural interpretation in terms of the cohomology of the base manifold and the homology of the target torus. We conjecture that this construction also holds for the IIA origin of gauged supergravities in 9D such that the supermembrane becomes the origin of all type II supergravities in 9D. The geometric structure of the symplectic torus bundle goes beyond the classification on conjugated classes of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathrm{SL}}\left( {{2},\mathbb{Z}} \right) $\end{document}. It depends on the elements of the coinvariant group associated to the monodromy group. The possible values of the (p,q) charges on a given symplectic torus bundle are restricted to the corresponding equivalence class defining the element of the coinvariant group.
引用
收藏
相关论文
共 146 条
[1]  
Cremmer E(1978)Supergravity theory in eleven-dimensions Phys. Lett. B 76 409-undefined
[2]  
Julia B(1999)An Nucl. Phys. B 541 195-undefined
[3]  
Scherk J(2002) multiplet of nine-dimensional type-II supergravity theories Phys. Lett. B 525 322-undefined
[4]  
Meessen P(2002)Supersymmetry of massive D = 9 supergravity JHEP 10 061-undefined
[5]  
Ortín T(2009)(Non)abelian gauged supergravities in nine-dimensions Nucl. Phys. B 811 1-undefined
[6]  
Gheerardyn J(2010)Supergravities without an action: gauging the trombone Class. Quant. Grav. 27 125009-undefined
[7]  
Meessen P(2008)Local E JHEP 02 044-undefined
[8]  
Bergshoeff E(2003) and the gauging of the trombone symmetry Nucl. Phys. B 655 93-undefined
[9]  
de Wit T(2011)Gauged supergravities, tensor hierarchies and M-theory JHEP 10 068-undefined
[10]  
Gran U(1998)On lagrangians and gaugings of maximal supergravities Nucl. Phys. B 521 117-undefined