Chinese social media reaction to the MERS-CoV and avian influenza A(H7N9) outbreaks

被引:0
作者
Isaac Chun-Hai Fung
King-Wa Fu
Yuchen Ying
Braydon Schaible
Yi Hao
Chung-Hong Chan
Zion Tsz-Ho Tse
机构
[1] Jiann-Ping Hsu College of Public Health,Department of Epidemiology
[2] Georgia Southern University,Journalism and Media Studies Center
[3] The University of Hong Kong,Department of Computer Science
[4] Hong Kong Special Administrative Region,Department of Biostatistics, Jiann
[5] The University of Georgia,Ping Hsu College of Public Health
[6] Georgia Southern University,undefined
[7] College of Engineering,undefined
[8] The University of Georgia,undefined
来源
Infectious Diseases of Poverty | / 2卷
关键词
Influenza; Avian Influenza; Middle East Respiratory Syndrome; Social Media Data; H7N9 Outbreak;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 87 条
[1]  
Salathe M(2012)Digital epidemiology PLoS Comput Biol 8 e1002616-2155
[2]  
Bengtsson L(2009)Infodemiology and infoveillance: framework for an emerging set of public health informatics methods to analyze search, communication and publication behavior on the Internet J Med Internet Res 11 e11-1014
[3]  
Bodnar TJ(2009)Digital disease detection–harnessing the Web for public health surveillance N Engl J Med 360 2153-1328
[4]  
Brewer DD(2009)Detecting influenza epidemics using search engine query data Nature 457 1012-1448
[5]  
Brownstein JS(2009)More diseases tracked by using Google Trends Emerg Infect Dis 15 1327-E071125
[6]  
Buckee C(2008)Using internet searches for influenza surveillance Clin Infect Dis 47 1443-45
[7]  
Campbell EM(2013)Monitoring influenza epidemics in china with search query from baidu PloS One 8 e64323-404
[8]  
Cattuto C(2007)HealthMap: the development of automated real-time internet surveillance for epidemic intelligence Euro Surveill 12 E071129-50
[9]  
Khandelwal S(2012)Social and news media enable estimation of epidemiological patterns early in the 2010 Haitian cholera outbreak Am J Trop Med Hyg 86 39-371
[10]  
Mabry PL(2013)Use of hangeul twitter to track and predict human influenza infection PloS One 8 e69305-142