Construction of self-dual MDR cyclic codes over finite chain rings

被引:0
|
作者
Jian Yuan
Shixin Zhu
Xiaoshan Kai
机构
[1] Anhui Jianzhu University,School of Mathematics and Physics
[2] Hefei University of Technology,School of Mathematics
关键词
Finite chain rings; Cyclic codes; MDR codes; Self-dual cyclic codes; 94B15; 94B05;
D O I
暂无
中图分类号
学科分类号
摘要
Maximum distance with respect to rank codes, or MDR codes, are a family of optimal linear codes that meet a Singleton-like bound in terms of the length and rank of the codes. In this paper, we study the construction of self-dual MDR cyclic codes over a finite chain ring R. We present a new form for the generator polynomials of cyclic codes over R of length n with the condition that the length n and the characteristic of R are relatively prime. Consequently, sufficient and necessary conditions for cyclic codes over R to be self-dual and self-orthogonal are obtained. As a result, self-dual MDR cyclic codes over the Galois ring GR(pt,m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {GR}(p^t,m)$$\end{document} with length n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document} dividing pm-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p^m}-1$$\end{document} are constructed by using torsion codes.
引用
收藏
页码:549 / 564
页数:15
相关论文
共 50 条
  • [41] On the lattice of cyclic codes over finite chain rings
    Fotue-Tabue, Alexandre
    Mouaha, Christophe
    ALGEBRA AND DISCRETE MATHEMATICS, 2019, 27 (02): : 252 - 268
  • [43] Contraction of cyclic codes over finite chain rings
    Tabue, Alexandre Fotue
    Mouaha, Christophe
    DISCRETE MATHEMATICS, 2018, 341 (06) : 1722 - 1731
  • [44] On Isodual Cyclic Codes over Finite Chain Rings
    Batoul, Aicha
    Guenda, Kenza
    Gulliver, T. Aaron
    Aydin, Nuh
    CODES, CRYPTOLOGY AND INFORMATION SECURITY, C2SI 2017, 2017, 10194 : 176 - 194
  • [45] Constacyclic and cyclic codes over finite chain rings
    National Key Laboratory, ISN, Xidian University, Xi'an, 710071, China
    J. China Univ. Post Telecom., 2009, 3 (122-125):
  • [46] SELF-DUAL PERMUTATION CODES OVER FORMAL POWER SERIES RINGS AND FINITE PRINCIPAL IDEAL RINGS
    张光辉
    刘宏伟
    Acta Mathematica Scientia, 2013, 33 (06) : 1695 - 1710
  • [47] SELF-DUAL PERMUTATION CODES OVER FORMAL POWER SERIES RINGS AND FINITE PRINCIPAL IDEAL RINGS
    Zhang, Guanghui
    Liu, Hongwei
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (06) : 1695 - 1710
  • [48] On cyclic self-dual codes
    Kai, Xiaoshan
    Zhu, Shixin
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2008, 19 (06) : 509 - 525
  • [49] On cyclic self-dual codes
    Xiaoshan Kai
    Shixin Zhu
    Applicable Algebra in Engineering, Communication and Computing, 2008, 19 : 509 - 525
  • [50] CYCLIC SELF-DUAL CODES
    SLOANE, NJA
    THOMPSON, JG
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1983, 29 (03) : 364 - 366