Construction of self-dual MDR cyclic codes over finite chain rings

被引:0
|
作者
Jian Yuan
Shixin Zhu
Xiaoshan Kai
机构
[1] Anhui Jianzhu University,School of Mathematics and Physics
[2] Hefei University of Technology,School of Mathematics
关键词
Finite chain rings; Cyclic codes; MDR codes; Self-dual cyclic codes; 94B15; 94B05;
D O I
暂无
中图分类号
学科分类号
摘要
Maximum distance with respect to rank codes, or MDR codes, are a family of optimal linear codes that meet a Singleton-like bound in terms of the length and rank of the codes. In this paper, we study the construction of self-dual MDR cyclic codes over a finite chain ring R. We present a new form for the generator polynomials of cyclic codes over R of length n with the condition that the length n and the characteristic of R are relatively prime. Consequently, sufficient and necessary conditions for cyclic codes over R to be self-dual and self-orthogonal are obtained. As a result, self-dual MDR cyclic codes over the Galois ring GR(pt,m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {GR}(p^t,m)$$\end{document} with length n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document} dividing pm-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p^m}-1$$\end{document} are constructed by using torsion codes.
引用
收藏
页码:549 / 564
页数:15
相关论文
共 50 条
  • [1] Construction of self-dual MDR cyclic codes over finite chain rings
    Yuan, Jian
    Zhu, Shixin
    Kai, Xiaoshan
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (01) : 549 - 564
  • [2] On self-dual cyclic codes over finite chain rings
    Batoul, Aicha
    Guenda, Kenza
    Gulliver, T. Aaron
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 70 (03) : 347 - 358
  • [3] On self-dual cyclic codes over finite chain rings
    Aicha Batoul
    Kenza Guenda
    T. Aaron Gulliver
    Designs, Codes and Cryptography, 2014, 70 : 347 - 358
  • [4] Self-Dual Codes Over Finite Chain Rings
    Qian, Jianfa
    Ma, Wenping
    2008 11TH IEEE SINGAPORE INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS (ICCS), VOLS 1-3, 2008, : 250 - 252
  • [5] Negacyclic self-dual codes over finite chain rings
    Xiaoshan Kai
    Shixin Zhu
    Designs, Codes and Cryptography, 2012, 62 : 161 - 174
  • [6] Construction of self-dual codes over finite rings Zpm
    Lee, Heisook
    Lee, Yoonjin
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2008, 115 (03) : 407 - 422
  • [7] Negacyclic self-dual codes over finite chain rings
    Kai, Xiaoshan
    Zhu, Shixin
    DESIGNS CODES AND CRYPTOGRAPHY, 2012, 62 (02) : 161 - 174
  • [8] Self-Dual Permutation Codes over Finite Chain Rings
    YUAN Yuan1
    2. School of Informatics
    Wuhan University Journal of Natural Sciences, 2007, (06) : 992 - 996
  • [9] Self-Dual Codes Over Chain Rings
    Simon Eisenbarth
    Gabriele Nebe
    Mathematics in Computer Science, 2020, 14 : 443 - 456
  • [10] Self-Dual Codes Over Chain Rings
    Eisenbarth, Simon
    Nebe, Gabriele
    MATHEMATICS IN COMPUTER SCIENCE, 2020, 14 (02) : 443 - 456