Construction of self-dual MDR cyclic codes over finite chain rings

被引:0
作者
Jian Yuan
Shixin Zhu
Xiaoshan Kai
机构
[1] Anhui Jianzhu University,School of Mathematics and Physics
[2] Hefei University of Technology,School of Mathematics
来源
Journal of Applied Mathematics and Computing | 2023年 / 69卷
关键词
Finite chain rings; Cyclic codes; MDR codes; Self-dual cyclic codes; 94B15; 94B05;
D O I
暂无
中图分类号
学科分类号
摘要
Maximum distance with respect to rank codes, or MDR codes, are a family of optimal linear codes that meet a Singleton-like bound in terms of the length and rank of the codes. In this paper, we study the construction of self-dual MDR cyclic codes over a finite chain ring R. We present a new form for the generator polynomials of cyclic codes over R of length n with the condition that the length n and the characteristic of R are relatively prime. Consequently, sufficient and necessary conditions for cyclic codes over R to be self-dual and self-orthogonal are obtained. As a result, self-dual MDR cyclic codes over the Galois ring GR(pt,m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {GR}(p^t,m)$$\end{document} with length n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document} dividing pm-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p^m}-1$$\end{document} are constructed by using torsion codes.
引用
收藏
页码:549 / 564
页数:15
相关论文
共 42 条
[1]  
Abualrub T(2007)Cyclic codes over Des. Codes Cryptogr. 42 273-287
[2]  
Siap I(2014) and Des. Codes Cryptogr. 70 347-358
[3]  
Batoul A(2008)On self-dual cyclic codes over finite chain rings Finite Fields Appl. 14 930-943
[4]  
Guenda K(2016)Negacyclic duadic codes Finite Fields Appl. 42 1-22
[5]  
Gulliver TA(1993)Enumeration formulas for self-dual cyclic codes J. Combin. Theory, Ser. A 62 30-45
[6]  
Blackford T(2004)Self-dual codes over the integers modulo 4 IEEE Trans. Inf. Theory 50 1728-1744
[7]  
Chen B(2009)Cyclic and negacyclic codes over finite chain rings Des. Codes Cryptogr. 50 77-92
[8]  
Lin S(2006)MDS codes over finite principal ideal rings Des. Codes Cryptogr. 39 127-153
[9]  
Zhang G(2007)Cyclic codes over Finite Fields Appl. 13 31-57
[10]  
Conway JH(2000) of even length IEEE Trans. Inform. Theory 46 265-269