Space-dependent source determination in a time-fractional diffusion equation using a local discontinuous Galerkin method

被引:0
作者
S. Yeganeh
R. Mokhtari
J. S. Hesthaven
机构
[1] Isfahan University of Technology,Department of Mathematical Sciences
[2] EPFL-SB-MATH-MCSS,undefined
[3] École Polytechnique Fédéral de Lausanne,undefined
来源
BIT Numerical Mathematics | 2017年 / 57卷
关键词
Inverse source problem; Fractional diffusion equation; Local discontinuous Galerkin method; 65M32; 65M60; 35R11;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to determining a space-dependent source term in an inverse problem of the time-fractional diffusion equation. We use a method based on a finite difference scheme in time and a local discontinuous Galerkin method in space and investigate the numerical stability and convergence of the proposed method. Finally, various numerical examples are used illustrate the effectiveness and accuracy of the method.
引用
收藏
页码:685 / 707
页数:22
相关论文
共 66 条
[1]  
Cheng J(2009)Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation Inverse Probl. 25 115002-2463
[2]  
Nakagawa J(1998)The local discontinuous Galerkin method for time-dependent convection–diffusion systems SIAM J. Numer. Anal. 35 2440-224
[3]  
Yamamoto M(1998)The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems J. Comput. Phys. 141 199-285
[4]  
Yamazaki T(2001)Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids SIAM J. Numer. Anal. 39 264-226
[5]  
Cockburn B(2008)Finite element method for the space and time fractional Fokker–Planck equation SIAM J. Numer. Anal. 47 204-1864
[6]  
Shu CW(2013)Local discontinuous Galerkin methods for fractional diffusion equations Math. Model. Numer. Anal. 47 1845-985
[7]  
Cockburn B(2015)Local discontinuous Galerkin methods for fractional ordinary differential equations BIT 55 967-2102
[8]  
Shu CW(2009)Application of the variational iteration method to inverse heat source problems Comput. Math. Appl. 58 2098-672
[9]  
Cockburn B(1990)The discrete Picard condition for discrete ill-posed problems BIT 30 658-35
[10]  
Kanschat G(1994)Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems Numer. Algorithms 6 1-3290