In plants, vacuolar invertase (β-fructofuranosidase, EC 3.2.1.26) is known to play as a key modulator for hexose accumulation and cell expansion. In this study, two cDNA clones (2,013 and 1,945 bp, with 99 % sequence identity) encoding vacuolar invertase isoforms were isolated from a commercially important Indian potato cultivar, Kufri Chipsona-1 by RT-PCR. The corresponding predicted proteins consisted of 635 amino acids (designated as KC-VIN1, lacking a few amino acids at N-terminus) and 639 amino acids (designated as KC-VIN2), respectively. They showed 99 % identity, and found to vary at several locations with mostly non-conservative substitutions. Multiple sequence alignment of vacuolar invertase homologs covering four Solanaceae family members revealed some notable distinguishing sequence features (signature-type sequences). A consensus sequence was predicted using 45 vacuolar invertase sequences from 27 taxonomically different plant species, and a phylogenetic tree was generated to know the evolutionary relation between them. Hydrophobic characters were predicted, and compared in different plant species. All these data are presented in a comprehensive manner which were not documented in the earlier reports. As a preliminary study, vacuolar invertase expression patterns in the tubers of some Indian potato cultivars were analyzed by semi-quantitative RT-PCR and extractable enzyme assay. In all the potato cultivars, the overall expression level of invertase was found to be considerably higher after storage at low temperature as compared to the freshly harvested tubers.