On small set of one-way LOCC indistinguishability of maximally entangled states

被引:0
|
作者
Yan-Ling Wang
Mao-Sheng Li
Zhu-Jun Zheng
Shao-Ming Fei
机构
[1] South China University of Technology,Department of Mathematics
[2] Tsinghua University,Department of Mathematical of Science
[3] Capital Normal University,School of Mathematical Sciences
[4] Max-Planck-Institute for Mathematics in the Sciences,undefined
来源
Quantum Information Processing | 2016年 / 15卷
关键词
One-way; LOCC indistinguishable; Maximally entangled states;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the one-way local operations and classical communication (LOCC) problem. In Cd⊗Cd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^d\otimes \mathbb {C}^d$$\end{document} with d≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 4$$\end{document}, we construct a set of 3⌈d⌉-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\lceil \sqrt{d}\rceil -1$$\end{document} one-way LOCC indistinguishable maximally entangled states which are generalized Bell states. Moreover, we show that there are four maximally entangled states which cannot be perfectly distinguished by one-way LOCC measurements for any dimension d≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 4$$\end{document}.
引用
收藏
页码:1661 / 1668
页数:7
相关论文
共 9 条
  • [1] On small set of one-way LOCC indistinguishability of maximally entangled states
    Wang, Yan-Ling
    Li, Mao-Sheng
    Zheng, Zhu-Jun
    Fei, Shao-Ming
    QUANTUM INFORMATION PROCESSING, 2016, 15 (04) : 1661 - 1668
  • [2] One-way LOCC indistinguishability of maximally entangled states
    Zhi-Chao Zhang
    Qiao-Yan Wen
    Fei Gao
    Guo-Jing Tian
    Tian-Qing Cao
    Quantum Information Processing, 2014, 13 : 795 - 804
  • [3] One-way LOCC indistinguishability of maximally entangled states
    Zhang, Zhi-Chao
    Wen, Qiao-Yan
    Gao, Fei
    Tian, Guo-Jing
    Cao, Tian-Qing
    QUANTUM INFORMATION PROCESSING, 2014, 13 (03) : 795 - 804
  • [4] Locally distinguishable maximally entangled states by two-way LOCC
    Yang, Ying-Hui
    Yuan, Jiang-Tao
    Wang, Cai-Hong
    Geng, Shi-Jiao
    QUANTUM INFORMATION PROCESSING, 2021, 20 (01)
  • [5] Locally distinguishable maximally entangled states by two-way LOCC
    Ying-Hui Yang
    Jiang-Tao Yuan
    Cai-Hong Wang
    Shi-Jiao Geng
    Quantum Information Processing, 2021, 20
  • [6] Constructions of one-way LOCC indistinguishable sets of generalized Bell states
    Yuan, Jiang-Tao
    Wang, Cai-Hong
    Yang, Ying-Hui
    Geng, Shi-Jiao
    QUANTUM INFORMATION PROCESSING, 2019, 18 (05)
  • [7] Constructions of one-way LOCC indistinguishable sets of generalized Bell states
    Jiang-Tao Yuan
    Cai-Hong Wang
    Ying-Hui Yang
    Shi-Jiao Geng
    Quantum Information Processing, 2019, 18
  • [8] Constructions of locally distinguishable sets of maximally entangled states which require two-way LOCC
    Yuan, Jiang-Tao
    Yang, Ying-Hui
    Wang, Cai-Hong
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (50)
  • [9] Novel method for one-way local distinguishability of generalized Bell states in arbitrary dimension
    Yang, Ying-Hui
    Yan, Rang-Yang
    Wang, Xiao-Li
    Yuan, Jiang-Tao
    Zuo, Hui-Juan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 55 (01)