Ideal class groups of imaginary quadratic fields

被引:0
|
作者
Dongho Byeon
机构
[1] Seoul National University,Department of Mathematical Sciences
来源
The Ramanujan Journal | 2022年 / 59卷
关键词
Ideal class group; Imaginary quadratic fields; Class number; 11R11;
D O I
暂无
中图分类号
学科分类号
摘要
Let d be a square-free positive integer and CL(-d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{CL}(-d)$$\end{document} the ideal class group of the imaginary quadratic field Q(-d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}(\sqrt{-d})$$\end{document}. In this paper, we show that given any odd integer g≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g \ge 3$$\end{document} and any integers r≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r \ge 1$$\end{document}, s with 0≤s≤r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \le s \le r$$\end{document}, there are infinitely many d such that CL(-d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{CL}(-d)$$\end{document} contains an element of order g and CL(-d)/CL(-d)4≅(Z/2Z)r-s×(Z/4Z)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{CL}(-d)/\mathrm{CL}(-d)^4 \cong ({\mathbb {Z}}/2{\mathbb {Z}})^{r-s} \times ({\mathbb {Z}}/4{\mathbb {Z}})^{s}$$\end{document}.
引用
收藏
页码:627 / 634
页数:7
相关论文
共 50 条