How to improve the fit of Archimedean copulas by means of transforms

被引:0
作者
Frederik Michiels
Ann De Schepper
机构
[1] University of Antwerp,Department of Accounting and Finance, Faculty of Applied Economics
[2] University of Antwerp,StatUa Statistics Center
来源
Statistical Papers | 2012年 / 53卷
关键词
Copula; Kendall’s tau; Archimedean copula; Tail dependence coefficient; Transform; 62H20; 62H12; 62G32;
D O I
暂无
中图分类号
学科分类号
摘要
The selection of copulas is an important aspect of dependence modeling issues. In many practical applications, only a limited number of copulas is tested and the copula with the best result for a goodness-of-fit test is chosen, which, however, does not always lead to the best possible fit. In this paper we develop a practical and logical method for improving the goodness-of-fit of a particular Archimedean copula by means of transforms. In order to do this, we introduce concordance invariant transforms which can also be tail dependence preserving, based on an analysis on the λ-function, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda=\frac{\varphi}{\varphi'}}$$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi}$$\end{document} is the Archimedean generator. The methodology is applied to the data set studied in Cook and Johnson (J R Stat Soc B 43:210–218, 1981) and Genest and Rivest (J Am Stat Assoc 88:1043–1043, 1993), where we improve the fit of the Frank copula and obtain statistically significant results.
引用
收藏
页码:345 / 355
页数:10
相关论文
共 16 条
  • [1] Cook RD(1981)A family of distributions for modelling non-elliptically symmetric multivariate data J R Stat Soc B 43 210-218
  • [2] Johnson ME(2009)Archimedean copulae for risk measurement J Appl Stat 36 907-924
  • [3] De Luca G(1986)The joy of copulas: bivariate distributions with uniform marginals Am Stat 40 280-283
  • [4] Rivieccio G(1993)Statistical inference procedures for bivariate archimedian copulas J Am Stat Assoc 88 1043-1043
  • [5] Genest C(1998)Discussion of understanding relationships using copulas N Am Actuar J 2 143-149
  • [6] Mackay J(2007)Goodness-of-fit tests for copulas: a review and a power study Insur Math Econ 1 2-878
  • [7] Genest C(2008)A copula test space model: how to avoid the wrong copula choice Kybernetika 44 864-undefined
  • [8] Rivest L(undefined)undefined undefined undefined undefined-undefined
  • [9] Genest C(undefined)undefined undefined undefined undefined-undefined
  • [10] Ghoudi K(undefined)undefined undefined undefined undefined-undefined