Homogenization for strongly anisotropic nonlinear elliptic equations

被引:0
|
作者
Bruno Franchi
Maria Carla Tesi
机构
[1] Dipartimento di Matematica,
[2] Piazza di Porta S. Donato,undefined
[3] 5,undefined
[4] 40127 Bologna,undefined
[5] Italy,undefined
[6] e-mail: franchib@dm.unibo.it; tesi@dm.unibo.it,undefined
关键词
Key words: Homogenization, weighted Sobolev spaces, compensated compactness.;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we present homogenization results for elliptic degenerate differential equations describing strongly anisotropic media. More precisely, we study the limit as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \epsilon \to 0 $\end{document} of the following Dirichlet problems with rapidly oscillating periodic coefficients:¶¶\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \cases {{ -div(\alpha(\frac{x}{\epsilon}}, \nabla u) A(\frac{x}{\epsilon}) \nabla u) = f(x) \in L^{\infty}(\Omega) \atop u = 0 su \eth\Omega\ } $\end{document}¶¶where, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ p>1, \quad \alpha : \Bbb R^n \times \Bbb R^n \to \Bbb R, \quad \alpha(y,\xi) \approx \langle A(y)\xi,\xi \rangle ^{p/2-1}, A \in M^{n \times n}(\Bbb R) $\end{document}, A being a measurable periodic matrix such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $A^t(x) = A(x) \ge 0$\end{document} almost everywhere.¶¶The anisotropy of the medium is described by the following structure hypothesis on the matrix A:¶¶\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \lambda^{2/p}(x) |\xi|^2 \leq \langle A(x)\xi,\xi \rangle \leq \Lambda ^{2/p}(x) |\xi|^2, $\end{document}¶¶where the weight functions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \lambda $\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \Lambda $\end{document} (satisfying suitable summability assumptions) can vanish or blow up, and can also be "moderately" different. The convergence to the homogenized problem is obtained by a classical compensated compactness argument, that had to be extended to two-weight Sobolev spaces.
引用
收藏
页码:363 / 387
页数:24
相关论文
共 50 条
  • [1] Homogenization for strongly anisotropic nonlinear elliptic equations
    Franchi, B
    Tesi, MC
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2001, 8 (04): : 363 - 387
  • [3] REITERATED HOMOGENIZATION OF DEGENERATE NONLINEAR ELLIPTIC EQUATIONS
    J.BYSTRM
    J.ENGSTRM
    P.WALL
    ChineseAnnalsofMathematics, 2002, (03) : 325 - 334
  • [4] Numerical homogenization and correctors for nonlinear elliptic equations
    Efendiev, Y
    Pankov, A
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2004, 65 (01) : 43 - 68
  • [5] Reiterated homogenization of degenerate nonlinear elliptic equations
    Byström, J
    Engström, J
    Wall, P
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2002, 23 (03) : 325 - 334
  • [6] Efficient Numerical Methods for Strongly Anisotropic Elliptic Equations
    Christophe Besse
    Fabrice Deluzet
    Claudia Negulescu
    Chang Yang
    Journal of Scientific Computing, 2013, 55 : 231 - 254
  • [7] Efficient Numerical Methods for Strongly Anisotropic Elliptic Equations
    Besse, Christophe
    Deluzet, Fabrice
    Negulescu, Claudia
    Yang, Chang
    JOURNAL OF SCIENTIFIC COMPUTING, 2013, 55 (01) : 231 - 254
  • [8] Corrector problem in the deterministic homogenization of nonlinear elliptic equations
    Cardone, Giuseppe
    Woukeng, Jean Louis
    APPLICABLE ANALYSIS, 2019, 98 (1-2) : 118 - 135
  • [9] Homogenization of a class of nonlinear elliptic equations with nonstandard growth
    Amaziane, Brahim
    Antontsev, Stanislav
    Pankratov, Leonid
    COMPTES RENDUS MECANIQUE, 2007, 335 (03): : 138 - 143
  • [10] Existence and uniqueness for nonlinear anisotropic elliptic equations
    Di Nardo, R.
    Feo, F.
    ARCHIV DER MATHEMATIK, 2014, 102 (02) : 141 - 153