A time-resolved, multi-symbol molecular recorder via sequential genome editing

被引:74
作者
Choi, Junhong [1 ,2 ]
Chen, Wei [1 ,3 ]
Minkina, Anna [1 ]
Chardon, Florence M. [1 ]
Suiter, Chase C. [1 ,4 ]
Regalado, Samuel G. [1 ]
Domcke, Silvia [1 ]
Hamazaki, Nobuhiko [1 ,2 ]
Lee, Choli [1 ]
Martin, Beth [1 ]
Daza, Riza M. [1 ]
Shendure, Jay [1 ,2 ,5 ,6 ]
机构
[1] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
[2] Howard Hughes Med Inst, Seattle, WA 98195 USA
[3] Univ Washington, Mol Engn & Sci Inst, Seattle, WA 98195 USA
[4] Univ Washington, Mol & Cellular Biol Program, Seattle, WA 98195 USA
[5] Brotman Baty Inst Precis Med, Seattle, WA 98195 USA
[6] Allen Discovery Ctr Cell Lineage Tracing, Seattle, WA USA
关键词
CRISPR; LINEAGE;
D O I
10.1038/s41586-022-04922-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
DNA is naturally well suited to serve as a digital medium for in vivo molecular recording. However, contemporary DNA-based memory devices are constrained in terms of the number of distinct 'symbols' that can be concurrently recorded and/or by a failure to capture the order in which events occur(1). Here we describe DNA Typewriter, a general system for in vivo molecular recording that overcomes these and other limitations. For DNA Typewriter, the blank recording medium ('DNA Tape') consists of a tandem array of partial CRISPR-Cas9 target sites, with all but the first site truncated at their 5' ends and therefore inactive. Short insertional edits serve as symbols that record the identity of the prime editing guide RNA(2) mediating the edit while also shifting the position of the 'type guide' by one unit along the DNA Tape, that is, sequential genome editing. In this proof of concept of DNA Typewriter, we demonstrate recording and decoding of thousands of symbols, complex event histories and short text messages; evaluate the performance of dozens of orthogonal tapes; and construct 'long tape' potentially capable of recording as many as 20 serial events. Finally, we leverage DNA Typewriter in conjunction with single-cell RNA-seq to reconstruct a monophyletic lineage of 3,257 cells and find that the Poisson-like accumulation of sequential edits to multicopy DNA tape can be maintained across at least 20 generations and 25 days of in vitro clonal expansion.
引用
收藏
页码:98 / +
页数:29
相关论文
共 41 条
  • [11] Synthetic recording and in situ readout of lineage information in single cells
    Frieda, Kirsten L.
    Linton, James M.
    Hormoz, Sahand
    Choi, Joonhyuk
    Chow, Ke-Huan K.
    Singer, Zakary S.
    Budde, Mark W.
    Elowitz, Michael B.
    Cai, Long
    [J]. NATURE, 2017, 541 (7635) : 107 - +
  • [12] Benchmarked approaches for reconstruction of in vitro cell lineages and in silico models of C. elegans and M. musculus developmental trees
    Gong, Wuming
    Granados, Alejandro A.
    Hu, Jingyuan
    Jones, Matthew G.
    Raz, Ofir
    Salvador-Martinez, Irepan
    Zhang, Hanrui
    Chow, Ke-Huan K.
    Kwak, Il-Youp
    Retkute, Renata
    Prusokiene, Alisa
    Prusokas, Augustinas
    Khodaverdian, Alex
    Zhang, Richard
    Rao, Suhas
    Wang, Robert
    Rennert, Phil
    Saipradeep, Vangala G.
    Sivadasan, Naveen
    Rao, Aditya
    Joseph, Thomas
    Srinivasan, Rajgopal
    Peng, Jiajie
    Han, Lu
    Shang, Xuequn
    Garry, Daniel J.
    Yu, Thomas
    Chung, Verena
    Mason, Michael
    Liu, Zhandong
    Guan, Yuanfang
    Yosef, Nir
    Shendure, Jay
    Telford, Maximilian J.
    Shapiro, Ehud
    Elowitz, Michael B.
    Meyer, Pablo
    [J]. CELL SYSTEMS, 2021, 12 (08) : 810 - +
  • [13] DNA targeting specificity of RNA-guided Cas9 nucleases
    Hsu, Patrick D.
    Scott, David A.
    Weinstein, Joshua A.
    Ran, F. Ann
    Konermann, Silvana
    Agarwala, Vineeta
    Li, Yinqing
    Fine, Eli J.
    Wu, Xuebing
    Shalem, Ophir
    Cradick, Thomas J.
    Marraffini, Luciano A.
    Bao, Gang
    Zhang, Feng
    [J]. NATURE BIOTECHNOLOGY, 2013, 31 (09) : 827 - +
  • [14] Small molecule regulated sgRNAs enable control of genome editing in E. coli by Cas9
    Iwasaki, Roman S.
    Ozdilek, Bagdeser A.
    Garst, Andrew D.
    Choudhury, Alaksh
    Batey, Robert T.
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [15] Inference of single-cell phylogenies from lineage tracing data using Cassiopeia
    Jones, Matthew G.
    Khodaverdian, Alex
    Quinn, Jeffrey J.
    Chan, Michelle M.
    Hussmann, Jeffrey A.
    Wang, Robert
    Xu, Chenling
    Weissman, Jonathan S.
    Yosef, Nir
    [J]. GENOME BIOLOGY, 2020, 21 (01)
  • [16] Kalhor R, 2017, NAT METHODS, V14, P195, DOI [10.1038/NMETH.4108, 10.1038/nmeth.4108]
  • [17] Unbiased investigation of specificities of prime editing systems in human cells
    Kim, Do Yon
    Moon, Su Bin
    Ko, Jeong-Heon
    Kim, Yong-Sam
    Kim, Daesik
    [J]. NUCLEIC ACIDS RESEARCH, 2020, 48 (18) : 10576 - 10589
  • [18] Predicting the efficiency of prime editing guide RNAs in human cells
    Kim, Hui Kwon
    Yu, Goosang
    Park, Jinman
    Min, Seonwoo
    Lee, Sungtae
    Yoon, Sungroh
    Kim, Hyongbum Henry
    [J]. NATURE BIOTECHNOLOGY, 2021, 39 (02) : 198 - 206
  • [19] Controlling CRISPR-Cas9 with ligand-activated and ligand-deactivated sgRNAs
    Kundert, Kale
    Lucas, James E.
    Watters, Kyle E.
    Fellmann, Christof
    Ng, Andrew H.
    Heineike, Benjamin M.
    Fitzsimmons, Christina M.
    Oakes, Benjamin L.
    Qu, Jiuxin
    Prasad, Neha
    Rosenberg, Oren S.
    Savage, David F.
    El-Samad, Hana
    Doudna, Jennifer A.
    Kortemme, Tanja
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [20] Lineage tracing and analog recording in mammalian cells by single-site DNA writing
    Loveless, Theresa B.
    Grotts, Joseph H.
    Schechter, Mason W.
    Forouzmand, Elmira
    Carlson, Courtney K.
    Agahi, Bijan S.
    Liang, Guohao
    Ficht, Michelle
    Liu, Beide
    Xie, Xiaohui
    Liu, Chang C.
    [J]. NATURE CHEMICAL BIOLOGY, 2021, 17 (06) : 739 - 747