Rough maximal functions supported by subvarieties on Triebel–Lizorkin spaces

被引:0
作者
Feng Liu
机构
[1] College of Mathematics and Systems Science,
[2] Shandong University of Science and Technology,undefined
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2018年 / 112卷
关键词
Singular integral; Parametric Marcinkiewicz integral; Maximal function; Triebel–Lizorkin space; Besov space; 42B20; 42B15; 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish the boundedness of a class of maximal functions related to rough singular integrals supported by compound subvarieties on Triebel–Lizorkin spaces and Besov spaces. As applications, several corresponding estimates of maximal functions related to parametric Marcinkiewicz integrals are also presented.
引用
收藏
页码:593 / 614
页数:21
相关论文
共 37 条
  • [1] Al-Qassem HM(2005)Maximal operators related to block spaces Kodai Math. J. 28 494-510
  • [2] Al-Qassem HM(2009)On certain rough integral operators and extrapolation J. Inequa. Pure Appl. Math. 10 1-29
  • [3] Cheng L(2009)On certain estimates for Marcinkiewicz integrals and extrapolation Collect. Math. 60 123-145
  • [4] Pan Y(2005)On maximal functions with rough kernels in Collet. Math. 56 47-56
  • [5] Al-Qassem HM(2006)On a class of singular integral operators with rough kernels Can. Math. Bull. 49 3-10
  • [6] Pan Y(2008)Rough maximal functions supported by subvarieties J. Oper. Theory 59 263-275
  • [7] Al-Salman A(2002)Singular integrals with rough kernels in J. Lond. Math. Soc. 66 153-174
  • [8] Al-Salman A(2010)Rough singular integrals supported on submanifolds J. Math. Anal. Appl. 368 677-691
  • [9] Al-Salman A(1990)A maximal operator related to a class of singular integrals Illinois J. Math. 34 120-126
  • [10] Al-Salman A(1977)Extension of Hardy spaces and their use in analysis Bull. Am. Math. Soc. 83 569-645