Large-time behavior of the spherically symmetric compressible Navier–Stokes equations with degenerate viscosity coefficients

被引:0
作者
Guangyi Hong
Huanyao Wen
Changjiang Zhu
机构
[1] South China University of Technology,School of Mathematics
来源
Zeitschrift für angewandte Mathematik und Physik | 2019年 / 70卷
关键词
Compressible Navier–Stokes equation; Vacuum free boundary; Density-dependent viscosity coefficients; Large-time behavior; Weighted energy estimates; 35Q30; 35D30; 35B40; 76N10;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the vacuum free boundary problem for the compressible spherically symmetric Navier–Stokes equations with an external force and degenerate viscosities in Rn(n≥2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{n}(n\ge 2)$$\end{document}. When the initial data are a small perturbation of the stationary profile and the viscosity coefficients are proportional to ρθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \rho ^{\theta } $$\end{document} with θ∈(0,2(γ-1))∩(0,γ2]n=2(0,γ2]n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta \in {\left\{ \begin{array}{ll} (0,2(\gamma -1))\cap (0,\frac{\gamma }{2}]&{}n=2\\ (0,\frac{\gamma }{2}]&{}n\ge 3 \end{array}\right. }$$\end{document}, a result on the global existence as well as sharper time decay rates of the weak solution is obtained which improves the one in Wei et al. (SIAM J Math Anal 40:869–904, 2008). The proof is based on some weighted energy estimates, and in our analysis, no smallness constraint is prescribed upon the derivatives of the initial data. It is also worth pointing out that our result covers the interesting case of the Saint-Venant shallow water model (i.e., γ=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma =2$$\end{document} and θ=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta =1$$\end{document}).
引用
收藏
相关论文
共 76 条
  • [1] Amosov AA(1989)Generalized solutions “in the large” of the equations of the one-dimensional motion of a viscous heat-conducting gas Soviet Math. Dokl. 38 1-5
  • [2] Zlotnik AA(1992)Solvability “in the large” of a system of equations for the one-dimensional motion of an inhomogeneous viscous heat-conducting gas Mat. Zametki 52 3-16
  • [3] Amosov AA(2003)Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasigeostrophic model Commun. Math. Phys. 238 211-223
  • [4] Zlotnik AA(2003)On some compressible fluid models: Korteweg, lubrication and shallow water systems Commun. Partial Differ. Equ. 28 1009-1037
  • [5] Bresch D(2002)Global solutions to the Navier–Stokes equations for compressible heat-conducting flow with symmetry and free boundary Commun. Partial Differ. Equ. 27 907-943
  • [6] Desjardins B(2005)Viscous compressible barotropic symmetric flows with free boundary under general mass force. I. Uniform-in-time bounds and stabilization Math. Methods Appl. Sci. 28 827-863
  • [7] Bresch D(2001)On the existence of globally defined weak solutions to the Navier-Stokes equations J. Math. Fluid Mech. 3 358-392
  • [8] Desjardins B(2006)Global behavior of compressible Navier-Stokes equations with a degenerate viscosity coefficient Arch. Ration. Mech. Anal. 182 223-253
  • [9] Lin CK(2006)Compressible Navier–Stokes equations with vacuum state in the case of general pressure law Math. Methods Appl. Sci. 29 1081-1106
  • [10] Chen GQ(2008)Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients SIAM J. Math. Anal. 39 1402-1427