Viscous Extended Cosmic Chaplygin Gas with Varying Cosmological Constant in FRW Universe

被引:0
作者
G. S. Khadekar
Aina Gupta
S. M. Jogdand
机构
[1] Rashtrasant Tukadoji Maharaj Nagpur University,Department of Mathematics
[2] Shri. Sant Gadge Maharaj College,Department of Mathematics
来源
Iranian Journal of Science and Technology, Transactions A: Science | 2020年 / 44卷
关键词
FRW cosmology; Extended cosmic Chaplygin gas; Bulk viscosity; Cosmological constant;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the viscous extended cosmic Chaplygin gas whose equation of state reduces to extended Chaplygin gas in the limit ω→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega \rightarrow 0$$\end{document} with varying cosmological constant in flat FRW universe. In this framework, we assume the bulk viscosity ζ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta $$\end{document} and cosmological constant Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document} as a linear combination of two terms, one is constant and other is a function of dark energy density ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document}. We obtain generalized Friedmann equations due to bulk viscosity, cosmological constant and extended cosmic Chaplygin gas. We calculate the time-dependent dark energy density ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} for various values of n and α=1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha = 1/2$$\end{document} both analytically and numerically. We analyse the behaviour of scale factor, Hubble expansion parameter and deceleration parameter graphically and discuss the stability of the model by using square of speed of sound.
引用
收藏
页码:299 / 309
页数:10
相关论文
共 104 条
  • [31] Zhang XM(2013)Cosmological constant—the weight of the vacuum Int J Mod Phys D 22 1350061-undefined
  • [32] Gonzalez-Diaz PF(2016)Viscous modified cosmic Chaplygin gas cosmology Phys Dark Universe 13 132-undefined
  • [33] Guo ZK(2014)Extended Chaplygin gas in Horava–Lifshitz gravity Adv High Energy Phys 2014 231452-undefined
  • [34] Ohta N(1988)FRW cosmology with the extended Chaplygin gas Phys Rev D 37 3406-undefined
  • [35] Zhang YZ(2013)Cosmological consequences of a rolling homogeneous scalar field Int J Theor Phys 52 1160-undefined
  • [36] Gupta G(2013)Viscous Chaplygin gas in non-flat universe Astrophys Space Sci 343 783-undefined
  • [37] Saridakis EN(2013)FRW bulk viscous cosmology with modified Chaplygin gas in flat space Astrophys Space Sci 344 237-undefined
  • [38] Sen AA(2014)FRW bulk viscous cosmology with modified cosmic Chaplygin gas Int J Theor Phys 53 125-undefined
  • [39] Kahya EO(2014)Interacting entropy-corrected holographic dark energy and IR cut-off length Int J Theor Phys 53 911-undefined
  • [40] Pourhassan B(2000)Time-dependent density of modified cosmic Chaplygin gas with cosmological constant in nonflat universe Int J Mod Phys D 9 373-undefined