Decoding the protein–ligand interactions using parallel graph neural networks

被引:0
|
作者
Carter Knutson
Mridula Bontha
Jenna A. Bilbrey
Neeraj Kumar
机构
[1] Pacific Northwest National Laboratory,
来源
Scientific Reports | / 12卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Protein–ligand interactions (PLIs) are essential for biochemical functionality and their identification is crucial for estimating biophysical properties for rational therapeutic design. Currently, experimental characterization of these properties is the most accurate method, however, this is very time-consuming and labor-intensive. A number of computational methods have been developed in this context but most of the existing PLI prediction heavily depends on 2D protein sequence data. Here, we present a novel parallel graph neural network (GNN) to integrate knowledge representation and reasoning for PLI prediction to perform deep learning guided by expert knowledge and informed by 3D structural data. We develop two distinct GNN architectures: GNNF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GNN}_{\mathrm{F}}$$\end{document} is the base implementation that employs distinct featurization to enhance domain-awareness, while GNNP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GNN}_{\mathrm{P}}$$\end{document} is a novel implementation that can predict with no prior knowledge of the intermolecular interactions. The comprehensive evaluation demonstrated that GNN can successfully capture the binary interactions between ligand and protein’s 3D structure with 0.979 test accuracy for GNNF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GNN}_{\mathrm{F}}$$\end{document} and 0.958 for GNNP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GNN}_{\mathrm{P}}$$\end{document} for predicting activity of a protein–ligand complex. These models are further adapted for regression tasks to predict experimental binding affinities and pIC50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {pIC}_{\mathrm{50}}$$\end{document} crucial for compound’s potency and efficacy. We achieve a Pearson correlation coefficient of 0.66 and 0.65 on experimental affinity and 0.50 and 0.51 on pIC50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {pIC}_{\mathrm{50}}$$\end{document} with GNNF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GNN}_{\mathrm{F}}$$\end{document} and GNNP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GNN}_{\mathrm{P}}$$\end{document}, respectively, outperforming similar 2D sequence based models. Our method can serve as an interpretable and explainable artificial intelligence (AI) tool for predicted activity, potency, and biophysical properties of lead candidates. To this end, we show the utility of GNNP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GNN}_{\mathrm{P}}$$\end{document} on SARS-Cov-2 protein targets by screening a large compound library and comparing the prediction with the experimentally measured data.
引用
收藏
相关论文
共 50 条
  • [41] Decoding Gestures in Electromyography: Spatiotemporal Graph Neural Networks for Generalizable and Interpretable Classification
    Lee, Hunmin
    Jiang, Ming
    Yang, Jinhui
    Yang, Zhi
    Zhao, Qi
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2025, 33 : 404 - 419
  • [42] Predicting residue-specific qualities of individual protein models using residual neural networks and graph neural networks
    Zhao, Chenguang
    Liu, Tong
    Wang, Zheng
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2022, 90 (12) : 2091 - 2102
  • [43] Using Deep Neural Networks to Improve the Performance of Protein-Protein Interactions Prediction
    Gui, Yuan-Miao
    Wang, Ru-Jing
    Wang, Xue
    Wei, Yuan-Yuan
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2020, 34 (13)
  • [44] Analysis of Protein-Ligand Interactions of SARS-CoV-2 Against Selective Drug Using Deep Neural Networks
    Natarajan Yuvaraj
    Kannan Srihari
    Selvaraj Chandragandhi
    Rajan Arshath Raja
    Gaurav Dhiman
    Amandeep Kaur
    Big Data Mining and Analytics, 2021, (02) : 76 - 83
  • [45] Analysis of Protein-Ligand Interactions of SARS-CoV-2 Against Selective Drug Using Deep Neural Networks
    Yuvaraj, Natarajan
    Srihari, Kannan
    Chandragandhi, Selvaraj
    Raja, Rajan Arshath
    Dhiman, Gaurav
    Kaur, Amandeep
    BIG DATA MINING AND ANALYTICS, 2021, 4 (02) : 76 - 83
  • [46] Graph-based Recommendation using Graph Neural Networks
    Dossena, Marco
    Irwin, Christopher
    Portinale, Luigi
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 1769 - 1774
  • [47] Graph Matching Using Hierarchical Fuzzy Graph Neural Networks
    Krleza, Dalibor
    Fertalj, Kresimir
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2017, 25 (04) : 892 - 904
  • [48] Protein Docking Model Evaluation by Graph Neural Networks
    Wang, Xiao
    Flannery, Sean T.
    Kihara, Daisuke
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2021, 8
  • [49] Protein Engineering with Lightweight Graph Denoising Neural Networks
    Zhou, Bingxin
    Zheng, Lirong
    Wu, Banghao
    Tan, Yang
    Lv, Outongyi
    Yi, Kai
    Fan, Guisheng
    Hong, Liang
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (09) : 3650 - 3661
  • [50] On the Ability of Graph Neural Networks to Model Interactions Between Vertices
    Razin, Noam
    Verbin, Tom
    Cohen, Nadav
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,