Decoding the protein–ligand interactions using parallel graph neural networks

被引:0
|
作者
Carter Knutson
Mridula Bontha
Jenna A. Bilbrey
Neeraj Kumar
机构
[1] Pacific Northwest National Laboratory,
来源
Scientific Reports | / 12卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Protein–ligand interactions (PLIs) are essential for biochemical functionality and their identification is crucial for estimating biophysical properties for rational therapeutic design. Currently, experimental characterization of these properties is the most accurate method, however, this is very time-consuming and labor-intensive. A number of computational methods have been developed in this context but most of the existing PLI prediction heavily depends on 2D protein sequence data. Here, we present a novel parallel graph neural network (GNN) to integrate knowledge representation and reasoning for PLI prediction to perform deep learning guided by expert knowledge and informed by 3D structural data. We develop two distinct GNN architectures: GNNF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GNN}_{\mathrm{F}}$$\end{document} is the base implementation that employs distinct featurization to enhance domain-awareness, while GNNP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GNN}_{\mathrm{P}}$$\end{document} is a novel implementation that can predict with no prior knowledge of the intermolecular interactions. The comprehensive evaluation demonstrated that GNN can successfully capture the binary interactions between ligand and protein’s 3D structure with 0.979 test accuracy for GNNF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GNN}_{\mathrm{F}}$$\end{document} and 0.958 for GNNP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GNN}_{\mathrm{P}}$$\end{document} for predicting activity of a protein–ligand complex. These models are further adapted for regression tasks to predict experimental binding affinities and pIC50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {pIC}_{\mathrm{50}}$$\end{document} crucial for compound’s potency and efficacy. We achieve a Pearson correlation coefficient of 0.66 and 0.65 on experimental affinity and 0.50 and 0.51 on pIC50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {pIC}_{\mathrm{50}}$$\end{document} with GNNF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GNN}_{\mathrm{F}}$$\end{document} and GNNP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GNN}_{\mathrm{P}}$$\end{document}, respectively, outperforming similar 2D sequence based models. Our method can serve as an interpretable and explainable artificial intelligence (AI) tool for predicted activity, potency, and biophysical properties of lead candidates. To this end, we show the utility of GNNP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GNN}_{\mathrm{P}}$$\end{document} on SARS-Cov-2 protein targets by screening a large compound library and comparing the prediction with the experimentally measured data.
引用
收藏
相关论文
共 50 条
  • [31] Ligand Binding Prediction Using Protein Structure Graphs and Residual Graph Attention Networks
    Pandey, Mohit
    Radaeva, Mariia
    Mslati, Hazem
    Garland, Olivia
    Fernandez, Michael
    Ester, Martin
    Cherkasov, Artem
    MOLECULES, 2022, 27 (16):
  • [32] Predicting the functional state of protein kinases using interpretable graph neural networks
    Ravichandran, Ashwin
    Araque, Juan
    Lawson, John
    BIOPHYSICAL JOURNAL, 2022, 121 (03) : 321A - 321A
  • [33] GraphGPSM: a global scoring model for protein structure using graph neural networks
    He, Guangxing
    Liu, Jun
    Liu, Dong
    Zhang, Guijun
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (04)
  • [34] Fast and effective protein model refinement using deep graph neural networks
    Xiaoyang Jing
    Jinbo Xu
    Nature Computational Science, 2021, 1 : 462 - 469
  • [35] GNNfam: Utilizing Sparsity in Protein Family Predictions using Graph Neural Networks
    Godase, Anuj
    Rahman, Md Khaledur
    Azad, Ariful
    12TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS (ACM-BCB 2021), 2021,
  • [36] PANDA2: protein function prediction using graph neural networks
    Zhao, Chenguang
    Liu, Tong
    Wang, Zheng
    NAR GENOMICS AND BIOINFORMATICS, 2022, 4 (01)
  • [37] Fast and effective protein model refinement using deep graph neural networks
    Jing, Xiaoyang
    Xu, Jinbo
    NATURE COMPUTATIONAL SCIENCE, 2021, 1 (07): : 462 - +
  • [38] Structure-aware Interactive Graph Neural Networks for the Prediction of Protein-Ligand Binding Affinity
    Li, Shuangli
    Zhou, Jingbo
    Xu, Tong
    Huang, Liang
    Wang, Fan
    Xiong, Haoyi
    Huang, Weili
    Dou, Dejing
    Xiong, Hui
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 975 - 985
  • [39] Predicting cancer drug response using parallel heterogeneous graph convolutional networks with neighborhood interactions
    Peng, Wei
    Liu, Hancheng
    Dai, Wei
    Yu, Ning
    Wang, Jianxin
    BIOINFORMATICS, 2022, 38 (19) : 4546 - 4553
  • [40] Decoding Gestures in Electromyography: Spatiotemporal Graph Neural Networks for Generalizable and Interpretable Classification
    University of Minnesota, College of Engineering and Science, Department of Computer Science, Minneapolis
    MN
    55455, United States
    不详
    MN
    55455, United States
    IEEE Trans. Neural Syst. Rehabil. Eng., 1600, 404-419 (2025):