Maximal subgroups of amalgams of finite inverse semigroups

被引:0
作者
Alessandra Cherubini
Tatiana B. Jajcayová
Emanuele Rodaro
机构
[1] Politecnico di Milano,Dipartimento di Matematica
[2] Comenius University,Department of Applied Informatics
[3] Universidade do Porto,Departamento de Matematica
来源
Semigroup Forum | 2015年 / 90卷
关键词
Inverse semigroups; Amalgams; Maximal subgroups; Groups acting on trees; Automorphism of graphs;
D O I
暂无
中图分类号
学科分类号
摘要
We use the description of the Schützenberger automata for amalgams of finite inverse semigroups given by Cherubini et al. (J. Algebra 285:706–725, 2005) to obtain structural results for such amalgams. Schützenberger automata, in the case of amalgams of finite inverse semigroups, are automata with special structure possessing finite subgraphs that contain all the essential information about the automaton. Using this crucial fact, and Bass–Serre theory, we show that the maximal subgroups of an amalgamated free product are either isomorphic to certain subgroups of the original semigroups or can be described as fundamental groups of particular finite graphs of groups built from the maximal subgroups of the original semigroups.
引用
收藏
页码:401 / 424
页数:23
相关论文
共 32 条
  • [1] Bennett P(1997)Amalgamated free product of inverse semigroups J. Algebra 198 499-537
  • [2] Bennett P(1997)On the structure of inverse semigroup amalgams Int. J. Algebra Comput. 7 577-604
  • [3] Cherubini A(2011)Amalgams vs Yamamura’s HNN-extensions of inverse semigroups Algebra Colloq. 18 647-657
  • [4] Rodaro E(1997)Amalgams of free inverse semigroups Semigroup Forum 54 199-220
  • [5] Cherubini A(2005)Amalgams of finite inverse semigroups J. Algebra 285 706-725
  • [6] Meakin J(2011)Multilinear equations in amalgams of finite inverse semigroups Int. J. Algebra Comput. 21 35-59
  • [7] Piochi B(2012)Amalgams of finite inverse semigroups and deterministic context-free languages Semigroup Forum 85 129-146
  • [8] Cherubini A(1996)Bass-serre theory for groupoids and the structure of full regular semigroup amalgams J. Algebra 183 38-54
  • [9] Meakin J(1991)Free products of inverse semigroups Glasgow Math. J. 33 373-387
  • [10] Piochi B(1974)Free inverse semigroups Proc. Lond. Math. Soc. 3 385-404