Central force optimization: A new deterministic gradient-like optimization metaheuristic

被引:77
作者
Formato R.A. [1 ]
机构
[1] Registered Patent Attorney and Consulting Engineer, Harwich, MA 02645
关键词
Central force optimization; CFO; Metaheuristic; Multidimensional search; Deterministic; Gradient-like; Optimization;
D O I
10.1007/s12597-009-0003-4
中图分类号
学科分类号
摘要
This paper introduces central force optimization as a new, nature-inspired metaheuristic for multidimensional search and optimization based on the metaphor of gravitational kinematics. CFO is a "gradient-like" deterministic algorithm that explores a decision space by "fl ying" a group of "probes" whose trajectories are governed by equations analogous to the equations of gravitational motion in the physical universe. This paper suggests the possibility of creating a new "hyperspace directional derivative" using the Unit Step function to create positive-defi nite "masses" in "CFO space." A simple CFO implementation is tested against several recognized benchmark functions with excellent results, suggesting that CFO merits further investigation. © Operational Research Society of India.
引用
收藏
页码:25 / 51
页数:26
相关论文
共 11 条
  • [1] Dorigo M., Maniezzo V., Colorni A., Positive feedback as a search strategy, Dipartimento di Elettronica, Politecnico di Milano, (1991)
  • [2] Kennedy J., Eberhart R., Particle swarm optimization, Proc. IEEE Conf. on Neural Networks, 4, pp. 1942-1948, (1995)
  • [3] Formato R.A., Copyright Reg. Nos. TX 6459271, 6461552, 6468062, 6464965, 6522082, 6540042, 6603758, 6823122, November (2006) et Seq.
  • [4] Formato R.A., Central force optimization: A new metaheuristic with applications in applied electromagnetics, Progress in Electromagnetics Research, 77, pp. 425-491, (2007)
  • [5] Formato R.A., Central force optimization: A new computational framework for multidimensional search and optimization, Studies in Computational Intelligence (SCI), 129, pp. 221-238, (2008)
  • [6] Formato R.A., Central force optimisation: A new gradient-like metaheuristic for multidimensional search and optimization, Int. J. Bio-Inspired Computation, 1, pp. 217-238, (2009)
  • [7] Yao X., Liu Y., Lin G., Evolutionary programming made faster, IEEE Trans. Evol. Comp., 3, 2, pp. 82-102, (1999)
  • [8] Cui Z., Zeng J., Sun G., A fast particle swarm optimization, Int. J. Innovative Computing, Information Control, 2, 6, pp. 1365-1380, (2006)
  • [9] Schweickart R., Chapman C., Durda D., Hut P., Bottke B., Nesvorny D., Threat Characterization: Trajectory Dynamics (White Paper 039), (2006)
  • [10] Valsecchi G.B., Milani A., Gronchi G.F., Chesley S.R., Resonant returns to close approaches: Analytical theory, Astronomy Astrophysics, 408, 3, pp. 1179-1196, (2003)