Alienation of the Quadratic and Additive Functional Equations

被引:0
|
作者
M. Adam
机构
[1] Silesian University of Technology,Institute of Mathematics
来源
Analysis Mathematica | 2019年 / 45卷
关键词
alienation; additive Cauchy functional equation; quadratic functional equation; Hyers–Ulam stability; primary 39B52; secondary 39B82;
D O I
暂无
中图分类号
学科分类号
摘要
Let G, H be uniquely 2-divisible Abelian groups. We study the solutions f, g: G → H of Pexider type functional equation (*)f(x+y)+f(x−y)+g(x+y)=2f(x)+2f(y)+g(x)+g(y),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x+y)+f(x-y)+g(x+y)=2f(x)+2f(y)+g(x)+g(y),$$\end{document} resulting from summing up the well known quadratic functional equation and additive Cauchy functional equation side by side. We show that modulo a constant equation (*) forces f to be a quadratic function, and g to be an additive one (alienation phenomenon). Moreover, some stability result for equation (*) is also presented.
引用
收藏
页码:449 / 460
页数:11
相关论文
共 50 条
  • [21] Fuzzy Stability of Quadratic Functional Equations
    Lee, Jung Rye
    Jang, Sun-Young
    Park, Choonkil
    Shin, Dong Yun
    ADVANCES IN DIFFERENCE EQUATIONS, 2010,
  • [22] On restricted functional inequalities associated with quadratic functional equations
    Tareeghee, M. A.
    Najati, A.
    Abdollahpour, M. R.
    Noori, B.
    AEQUATIONES MATHEMATICAE, 2022, 96 (04) : 763 - 772
  • [23] On restricted functional inequalities associated with quadratic functional equations
    M. A. Tareeghee
    A. Najati
    M. R. Abdollahpour
    B. Noori
    Aequationes mathematicae, 2022, 96 : 763 - 772
  • [24] On Approximate Additive-Quartic and Quadratic-Cubic Functional Equations in Two Variables on Abelian Groups
    Ebadian, A.
    Najati, A.
    Gordji, M. Eshaghi
    RESULTS IN MATHEMATICS, 2010, 58 (1-2) : 39 - 53
  • [25] Stability of an additive-quadratic-quartic functional equation
    Kim, Gwang Hui
    Lee, Yang-Hi
    DEMONSTRATIO MATHEMATICA, 2020, 53 (01) : 1 - 7
  • [26] Stability of quadratic functional equations in tempered distributions
    Young-Su Lee
    Journal of Inequalities and Applications, 2012
  • [27] Inner product spaces and quadratic functional equations
    Jae-Hyeong Bae
    Batool Noori
    M. B. Moghimi
    Abbas Najati
    Advances in Difference Equations, 2021
  • [28] Inner Product Spaces and Quadratic Functional Equations
    Park, Choonkil
    Park, Won-Gil
    Rassias, Themistocles M.
    COMPUTATIONAL ANALYSIS, AMAT 2015, 2016, 155 : 137 - 151
  • [29] Stability of quadratic functional equations in generalized functions
    Young-Su Lee
    Advances in Difference Equations, 2013
  • [30] Stability of quadratic functional equations in tempered distributions
    Lee, Young-Su
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,