Cosmic Censorship of Smooth Structures

被引:0
作者
Vladimir Chernov
Stefan Nemirovski
机构
[1] Dartmouth College,Department of Mathematics, 6188 Kemeny Hall
[2] Steklov Mathematical Institute,Mathematisches Institut
[3] Ruhr-Universität Bochum,undefined
来源
Communications in Mathematical Physics | 2013年 / 320卷
关键词
Manifold; Cauchy Surface; Smooth Structure; Cosmic Censorship; Cauchy Hypersurface;
D O I
暂无
中图分类号
学科分类号
摘要
It is observed that on many 4-manifolds there is a unique smooth structure underlying a globally hyperbolic Lorentz metric. For instance, every contractible smooth 4-manifold admitting a globally hyperbolic Lorentz metric is diffeomorphic to the standard \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^4}$$\end{document} . Similarly, a smooth 4-manifold homeomorphic to the product of a closed oriented 3-manifold N and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}$$\end{document} and admitting a globally hyperbolic Lorentz metric is in fact diffeomorphic to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N\times \mathbb{R}}$$\end{document} . Thus one may speak of a censorship imposed by the global hyperbolicty assumption on the possible smooth structures on (3 + 1)-dimensional spacetimes.
引用
收藏
页码:469 / 473
页数:4
相关论文
共 20 条
  • [1] Bernal A.(2003)On smooth Cauchy hypersurfaces and Geroch’s splitting theorem Commun. Math. Phys. 243 461-470
  • [2] Sánchez M.(2005)Smoothness of time functions and the metric splitting of globally hyperbolic space-times Commun. Math. Phys. 257 43-50
  • [3] Bernal A.(2007)Globally hyperbolic spacetimes can be defined as “causal” instead of “strongly causal” Class. Quant. Grav. 24 745-750
  • [4] Sánchez M.(1965)Infinite sums of manifolds Topology 3 31-42
  • [5] Bernal A.(1968)Spinor structure of space-times in general relativity I. J. Math. Phys. 9 1739-1744
  • [6] Sánchez M.(1966)Uncountably many contractible open 4-manifolds Topology 6 37-42
  • [7] Curtis M.L.(1985)An infinite set of exotic J. Diff. Geom. 21 283-300
  • [8] Kwun K.W.(1961)’s Bull. Am. Math. Soc. 67 510-514
  • [9] Geroch R.(1962)Cartesian products of contractible open manifolds Trans. Am. Math. Soc. 102 373-382
  • [10] Glaser L.C.(1962)Some contractible open 3-manifolds Proc. Camb. Phil. Soc. 58 221-229