Equality in the logarithmic Sobolev inequality

被引:0
|
作者
Shin-ichi Ohta
Asuka Takatsu
机构
[1] Osaka University,Department of Mathematics
[2] Tokyo Metropolitan University,Department of Mathematical Sciences
[3] RIKEN Center for Advanced Intelligence Project (AIP),undefined
来源
manuscripta mathematica | 2020年 / 162卷
关键词
Primary 53C21; Secondary 53C24;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the rigidity problem for the logarithmic Sobolev inequality on weighted Riemannian manifolds satisfying Ric∞≥K>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {Ric}_{\infty } \ge K>0$$\end{document}. Assuming that equality holds, we show that the 1-dimensional Gaussian space is necessarily split off, similarly to the rigidity results of Cheng–Zhou on the spectral gap as well as Morgan on the isoperimetric inequality. The key ingredient of the proof is the needle decomposition method introduced on Riemannian manifolds by Klartag. We also present several related open problems.
引用
收藏
页码:271 / 282
页数:11
相关论文
共 50 条