Electron Transport in Cryocrystals

被引:0
作者
V. G. Storchak
D. G. Eshchenko
J. H. Brewer
S. P. Cottrell
S. F. J. Cox
E. Karlsson
R. W. Wappling
机构
[1] Russian Science Centre “Kurchatov Institute”,Canadian Institute for Advanced Research and Department of Physics
[2] Institute for Nuclear Research,Department of Physics
[3] University of British Columbia,undefined
[4] Rutherford Appleton Laboratory,undefined
[5] Chilton,undefined
[6] Uppsala University,undefined
来源
Journal of Low Temperature Physics | 2001年 / 122卷
关键词
Electron Transport; Spin Relaxation; Relaxation Technique; Excess Electron; Recent Experimental Study;
D O I
暂无
中图分类号
学科分类号
摘要
We review our recent experimental studies of the excess electron transport in cryocrystals and cryoliquids. We use a muon spin relaxation technique to explore the phenomenon of delayed muonium formation: excess electrons liberated in the μ+ ionization track converge upon the positive muons and form Mu (μ+e−) atoms in which the μ+ polarization is partially lost. The spatial distribution of such electrons with respect to the moon is shown to be highly anisotropic: the μ+ thermalizes well “downstream” from the center of the electron distribution. Measurements in electric fields up to 30 kV/cm allow one to estimate the characteristic muon-electron distance in different insulators: the results range from 10−6 cm to 10−4 cm. This circumstance makes the basis of a recently developed new technique for electron transport studies on microscopic scale: electron mobility can be extracted when both the characteristic muon-electron distance and characteristic time for muonium atom formation are determined. The microscopic length scale enables the electron to sometimes spend its entire free lifetime in a state which may not be detected by conventional macroscopic techniques. The muonium formation process in condensed matter is shown to depend critically upon whether the excess electron forms a polaron or remains in a delocalized state. Different mechanisms of electron transport in insulators are discussed.
引用
收藏
页码:527 / 535
页数:8
相关论文
共 50 条
  • [1] Electron scattering and transport in simple liquid mixtures
    Boyle, G. J.
    Garland, N. A.
    McEachran, R. P.
    Mirihana, K. A.
    Robson, R. E.
    Sullivan, J. P.
    White, R. D.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2024, 57 (01)
  • [2] SIMULATION OF ELECTRON TRANSPORT
    Zhukovsky, M.
    Skachkov, M.
    Deresch, A.
    Jaenisch, G. -R.
    Bellon, C.
    REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOLS 29A AND 29B, 2010, 1211 : 572 - +
  • [3] Electron transport and excitations in graphene
    Avouris, Phaedon
    22ND SOLVAY CONFERENCE ON CHEMISTRY: QUANTUM EFFECTS IN CHEMISTRY AND BIOLOGY, 2011, 3 (01):
  • [4] Electron transport in bulk GaAsN
    Vogiatzis, N.
    Rorison, J. M.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2011, 248 (05): : 1183 - 1186
  • [5] Electron transport in quantum waveguides
    Wang, J. B.
    Midgley, S.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2007, 4 (03) : 408 - 432
  • [6] Electron transport in solids and liquids
    V. G. Storchak
    J. H. Brewer
    D. G. Eshchenko
    Applied Magnetic Resonance, 1997, 13 : 15 - 24
  • [7] Models of Photosynthetic Electron Transport
    Riznichenko G.Y.
    Belyaeva N.E.
    Diakonova A.N.
    Kovalenko I.B.
    Maslakov A.S.
    Antal T.K.
    Goryachev S.N.
    Plyusnina T.Y.
    Fedorov V.A.
    Khruschev S.S.
    Rubin A.B.
    Biophysics, 2020, 65 (5) : 754 - 768
  • [8] Regulation of photosynthetic electron transport
    Rochaix, Jean-David
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2011, 1807 (03): : 375 - 383
  • [9] Electron transport in bipyridinium films
    Raymo, FM
    Alvarado, RJ
    CHEMICAL RECORD, 2004, 4 (03) : 204 - 218
  • [10] Electron Transport in Isodiketopyrrolopyrrole (isoDPP)
    Iijima, Kodai
    Mori, Takehiko
    CHEMISTRY LETTERS, 2017, 46 (03) : 357 - 359